RW Net 4.42

A Network Analysis System SDK

© 2022 RouteWare / Uffe Kousgaard

Contents |

Table of Contents

Part |

D O~ WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22

Part Il
1

User Manual 1
1) oo L0 1 o 2
(ST L0 L0 T L) 2
YA (e I =To (UL =T o 4= oL P 3
QUICK OVEIVIBW ..ottt et e e e e e e et e e et e et e et e e et e eeaanas 3
LN T= 8TV] Q= .01 o (o o Y 4
[T 1T 10 1.4 F= L o o 5
PN g1 o1V (= OO TPPRPPRPPRPRN 5

[=] L(o] PP SOUPUPTTTPRUOPPINt 6

[C=T g g =Y I 1 5 TP PPN 8
[T 41 TSP 8

(R ToT: o [F-1 0o 1T TSP 8
LV A= A A (o140] F T 9
(Ofo Yol o [TaT=1 (=T 01 11K 9
LOT0To] o [T = 1= 2] Y53 (=] 1 o 9
00) 10
[LR Vo1 1 T 10
[TS Vo] o I o] o] f=Te] {0 o H PSP 11
Pr OGN ESS BVENTS .. iiiii e e e r e e 11
= o = =T oI 12
AN o 3 {11 14
(D= 1= IS0 YU | o1 14
4 IV <£N 16
(Yo Yo o] o] A 1=ISTR 0 XV Z=T Y/ 1= 16
(O 1<To] G I 1= TR 18
O R T o 1= (] T RSP 19
Changes fromM RW NEL 2 ... i e e e e e e et e e e e aaeees 19
(I oT=T g FT S =] o 1 21
Main Classes 25
L1111 01] SR 26
AT e 26
AGUFTIS ..ottt ettt 27

F] Lo) A o o] o PP UOUUPPTTTPRTPOPPIRS 27

(0= T YoT=Y 1 1=To IO 27
(LT T PPN 27

(Ofo Yol do [Ta TN 1=10 o [APPSR 27
(00eTo] £o 153V OO TSUPPPPTTIN 28

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

(0T N (=] 2T o o] o S PSPPI 28
Directory
g o Y7 0 o =Y/ PPt
EPSG it
=T o1 U | (PP
FailOnDifferentCoordSys...
L e To T = o T o) PPt
[01 (7o TV o | ST UPTTTTI RSP
oD B =T o | €T PP TP PPN
Y oD (oo [T =T 7= | TSP UPPTT TIPSR
MBIR it
N[0 Lo [=T @0 U1 o | TSP
OnimportLink ...
PRI o
ST 15 o= = UL e 1= SN
] =Tt 11 1= TP PPPTTTN
LS (0 o1 12 1= PN
JLIC 01 €= L1 =Y o o 4o P
ZFrOMETEIA & ZTOFIEIA ...ttt e e s
A [T oo 7 &] o U1 =
A 31
AAFIIES .o 31
CANCEITEA ..ot e et e et a b aeaaeaaaes 32
(Ol T OO TSUPPPPTTINN 32
(O0eTo 1=T o T Lo [T O3S TSP TSPPPPPTTIN 32
(O0eTo 1=T o T Lo =1 5] 2] TSP U SUPPPPTTINN 32
(D = To1 (o] oY APPSO PUPTTTTIRUOPIIN 32
[aTol aY] o1 T0] 1 G- APPSO UPTTTTRRUOPPIN 32
EX @ CULB ALIIIDIULE .eeet it e ettt e ettt e e e et e et bbbt e e e e et e a e e e e tb e aaaes 33
EXECULEALIIIDULEEVENT .ttt e ettt e e e e et et e e e e e et ebbb e e aaaes 33
EXECULEEXTEINMAIIDINT ...ttt e e e ettt bt e e e et e et bbbt e e e e et e bbb n e e e e e eebbtnaaaaaes 33
EXECULEEXTEINAIIDINTEVENT ... ittt ettt oo ettt e e e e e e et bbb e e e e e e ee bbb e e e e eeeebbbaaaaaaaes 33
EXECULEEXTEINMAIIDSIIING . .etttiiieeiiiiiti ettt ettt oo e et ettt oo e et e et bbb e e e e e et ettt e e e e eeeebbbnaaaaaaes 33
EXECULEEXTErNalIDSIIINGEVENT ..ottt ettt e et ettt e e et et e bbb e e e e e e eebbbaaaaaaes 34
Yo =Y I 111 1L TSP SO PTTTTIRUPPPN 34
EX@CULELIMITEVENT ...ttt e ettt e e e et e et b bt e e e e et e bbb e e e e e e eebbbnaaaaaes 34
EXECULEROBUNAIME ... ittt e ettt oo e e e et et bt oo e et e et bb et e e et et e bbb e e e e eeeebbbnnaaaaaes 34
EXECULEROAINAMEEVENT ...ttt ettt oo ettt e e e e e ettt bt e e e et et e bbb r e e e e e eebbbnaaaaaes 35
e T T Lo Lo 1= TSP UPTTTTIRUOPPN 35
ROAANAM EFITEINAEX ..ttt ettt e e e et e et bbb e e e e e et ettt e e e e e e eebbtaaaaaaes 35
3 TlmportSQL
EX @ CULEGEOPACKAGE ...ttt ittt e et e ettt oo e e e e et b b e e e e e e et bbb e e e e e et aaaes 36
Yol U L (Y 7S] © TP PPN 36
EX @ CULEIM S S 2 ettt ettt ettt et et et e e e e e et et e e e e e et eaas 37
EXECULEORACLE ...t ettt 37
EXECULEORACLEZ ... ettt et e 37
EXECULEPOSTGIS ..ottt ettt ettt ettt ettt et e n et 37
EXECULEPOSTGISZ ..ottt ettt et et e e et e et 37
e T T Lo Lo 1= TP SO UPTTTTIRUOPPN 38
ROAANAM EFITEINTEX .ttt oottt e e e et e et bbbt e e e e et e bbb a e e e e e eebbbaaaaaaes 38
WWHETECIAUSE ...ttt oottt oo oo e et e b b oo oo et e et bbb oo e e e et e bbb oo e e e e et bbb n e e e e e e ebbbnaaaaaas 38
A N[Ao] T 38

© 2022 RouteWare / Uffe Kousgaard

Contents M

X Lo TN L= o V7= o 1= PPt 42
AttributeGet

ATTTDULE GBI ..eeviiii ettt ettt e et et e et e e n e e et e e e nn e e r e e e nee 43
ATTTDULE SAVE ..ttt e e et r e ettt e e e e 43
AT UL SO ..t ettt ettt 43
ATTTDULE SEEBIT .ttt et n et e r e e 43
AT DULE SEEBITS .eevtiii ettt e ettt r e et e e e 43
AttribULE SEESKIPINSEAICRBIL ...ttt et e e et e et e et e e e e e 43
(O Yo - 1 =T o) PSPPSR 43
(O Yol 1= Yo 0 USRS 44
(O T=Y ol @lo Yol fo [T o = L (ISP PPPTTN 44
(08 =T o0 T LT g = @ 0T o PSS 44
CheckLink

CheckLocation

CRECKLOCATIONLISE ... iiieetiiii ettt e e et et r e e et e et n e e e e e e e e n e e 45
(O =T o N (oY = USRS 45
CRECKNOGELISE ...ttt et n e e et et e r e et e e e et na e e e et e n e n e e e e e e nnnes 45
L0 =00 @] o 1= o PPN 45
(O1 g T=To (g HTT oY 0T [TSRS PPPTTTNN 45
(O Lo o = T USRS

(O Lo E PP PPPTTTN
CloseExternallD

CloseRoadNameFile

Codepage

CompactMIF

(OfeTo] fo TT = 11U o1 ST PPPTTN 46
COOTAINATEWINUOW ...iieiiiiii ettt ettt e e et et n e e et et e e n e et e e e et n e e e e n e e s nnnneeeeeennnes 46
L0 o o 15372 SN 46
PR ALE ATTAY COSE . ittt ittt et 47
L@ == L= AN = VA T 1= PN a7
CreateArrayTurn .

CUIDESAC ... iiiiitii ettt ettt oottt et e
(DT] €= TP PPN

(D] =Tt (o o IS UPPTTTI ST
Directory

DiStaNCEBEtWEENINOUESvviiiieiiiieit ettt e ettt e e ettt n e e e ettt e e r e e 48
DiStaNCEBEIWEENMPOINTS ..ouiiiiieiiieiit ettt ettt e e et e e r e e e n et e e e r e e 48
DIStANCETOLINK ettt ettt ettt e 48
DiStANCE T O LINKSIMPIE ittt e e e e et e e et e e et e e et e e e e e a e 48
(DS e= g ot e (o T [TSP 48
[0T 1 o2= 1= T PPt 49
g o Y7 0 o =Y/ PPt 49
EPSG ittt 49
T 0 To X T 4G PPt 49
L o To Y I T]S U | o St 49
oL oY o T o= L1 oY o PPt 50
Lt o To T Ao o 1= I = PPt 50
T 0T o X110 o [PP 50
g o Lo Yt o] NV CT=T o T =N o o Pt 50
EXTEIMAIIDZ2LINK (o evvvess e eee ettt e r e ettt e e e e 51
EXTerNalNOGEIA2ZLEVEISeii ettt e een e e nees 51
o G o Tod £ST=Tor o o [TSP

FindDuplicateLinks

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

GEOJISON ettt b e e 53
GetCost

(€1 (€] IS ST =Tt (o IR PPPTTN 53
(€1 (€] ISEST=Tot o] o] (o 1V | (= PSPPSR 53
(€Y 111 T S PP PPPTTTN
GetLimitBit

Lo 65 0T =o PN
(€11 0 111 = PSPPSR
(I T 1 0 ¢- | PSPPI
Lo 11 4o 11 €10 T PN

L == U o 2 /PPt
= o o PPt

[o124 m oY1 1 Vo o [TSP PP 54
[012024 o] o To = PSPPI 54
[01 (7o TV o | ST UPPTTTISRTN 55
I = o 4 PPt 55
[o1 1 PSPPI 55
[010024 = (=T o = | TSP 55
LINKZ2ROAANGITIEeiiiciiiieit ettt ettt e ettt et e e e et e e e e e e et e et n e e e e e e ennnneenees 55
LINK2ROAANGIMEIDottt e ettt e e et e et r e e e e e e et n e e et e e e nnenneenees 55
(I oTof= 11 o] P2l o o] o 11 g T N (- TSP PPTTTITSPI 55
LOCAtION2CO00NAINALELISE . .vuiiiieiiieeiti ettt e e e e et r e e e e e et e e r e e 56
[0 o o1 T G PPt
LoopLinks

Y o TSP PPTTTI TR
MatrixDyn

Y= L Y/ 0 PPt 56
oD B =To | €T PP PPN 57
MBIR it 57
N ToTo [=Rl 0o o] o [4 =N (=TSP UPPTTTISST 57
NodeCount

NoDriveThroughCheck

[N o] T V2= I o o YU o o1 1 S Pt

[N 0T T V7= I o o U o | 1= PPt

NonCulDeSacNodes

T Lo [0 1) TSP PP
L ET= o 1S o = o PPt
T U I T2 0 TSP UPPTTTI ST
(e T- T [o T TSP UPPTTTIURT
ROAANAME2ROAANGIMEID ittt ettt e et r e e e et e et na e e reeennnneenees 61
RoadNamelD2RoadName

© 2022 RouteWare / Uffe Kousgaard

Contents Vv

ROAANAMEMAXWIALN L.t et e e e ettt e et r e e et e e et a e e et n e e et e e eaan e
RouteLength
= Y= R 0 N

=T 1= o PSPPSR
ST=TE=Tox {0 T ST PPPTTN
SelectLinksWithLimits ...
RS T (O o F1 PPN
1= T o 1 USRS
1= I T 0112 PRSP PPPTTTN
Y= 55 o == N
1= T T PP PPPTTN

LIS L 17 1 14 PP

LI L= o Yo 1= 1 o P

LIS T 1= g 1] £ (] IS PP

LIS T 01 =g 1] £ 4 1D G PP

LIS T 1= g 1o] £ 4 1D G 7 PP

LI L oo 1= 1o P

TurnlmportTxt ..

IO L 17> T = o Y

LIS LTS] PP

TUPNRESIIICTION 1.ttt e ettt n e e e et e e n et e et e e e e r e e e e e e s

TUIMNRESIIICHONCOMPIEX 1iitiieiii ettt ettt e ettt e et e e et e et et e e e et r e e e et e e et neeetn e e eaanaeeenn s 68

NV ES] v Ta Lo Fo T o PP SS PP 68

ST 10T = T o PP 69

L8] o =N 2= 2 | o] = U PSS 69

A o L@ o Yo 1= = Vo PPt 69

LT 1 (TSP 70

L (oI 1= (T To £ TSP UPPTTTI RSP 70
[0 1 (=TT PPN 70
g o To A = i o I N 71
18[00 PP SPPPPPPN 71
NOTEZLINK ..ottt ettt e e e e ettt e e e e ettt e e et e e e e e e a e e e e e e e 72
L5 = PP 72
L0735} £ (=T o o PPN 73

B TSPAtiAlSEAICR ... 73

(O L=T: L= TSP PP TPPPION 74

FINAOVEIPASSES ...ettuiieiiiiiitt ettt e oottt e oot ettt bt oo 4o e ettt bt oo oo e e e et bbb e oo e e e et e bbb e e e e e eesbbbnaaaaaaes

FindNonConnected

FINANONCONNECIEANOGES ...ttt e ettt e e e e e e et bbb e e e e e et ettt e e e e e e eebbbaaaaaaes 74

GeoJSON

(TS T= L4 - | PP PTTPPPTPPPION

JoinNodes

MBRselect

N LT | o1 TSP SOP PPN 75

N LR Mo Tof= 1o] o E TP UOPUPTTTTIRUOPIIN 75

NEATESILOCATIONSIMIPIE ittt e ettt e e et e et bbb e e e e e et et n e e e e e eebbbaaaaaaes 76

NEAreStLOCAtIONSIMPIELISE ... ittt ettt e et ettt e e e e et et a e e e e e aebbb e e aaaaes 76

© 2022 RouteWare / Uffe Kousgaard

Vi

RW Net 4

ST =R (o o [TSP UPPTTTISSPI
NearestNodeSimple
NEATESIVEITEX vttt ittt ettt et et ettt et et e
STCTL=Tol {01 PRSP PPPTTTN
Y= LT {17 Y - 3/ N
SelectLinksList
ST=TF=To3 £ Lo L=T PSPPSR
Y= LT 1N oY LTSN o - PN
SEIECINOTESLISE ...ttt ettt e

(O TN (PPN 79
DecimalsDist

(DL Tol 10 = 1 T L= TSP UPPTTTPR PPN 80
(D1 2= 1 [o1=1 0 T | TP SO PUPTTTTIRUOPIN 80
DriveTIMESIMPIEDYN ...ttt e et oo e ettt e bt oo e et e et bbb et e e e e et e bbb e e e e e e eebbbnaaaaaes 80
GeoJSON
(TS T= L4 - | PP PTTPPPTPPPION
IONOTEONMEWAY .etueiiti ettt ettt ettt ettt e e e et e et et et e et e ettt et e e e e e 81
[Te L Oe = TSSO PPPTRRR 82
ISOCOSEDYIN .ttt et et ettt e e e e e 82
(o] oo 1 { I TSP PSP UPTTTTIRUOPIIN 82
ISOCOSILISIDYN ..ttt ettt ettt e ettt e et et e oo oo ettt bt oo et e et bbb e e e et e bbb e e e e e ebb e aaaes 82
IsoCostListN
IsoCostListNDyn
IsoCostMulti
LSO LMD IV TIMIE ettt i ittt ettt ettt e oot et e bt oo oo e ettt bt oo oo e e e e e bbb et e e e e et e bbb e e e e e e eebbbnaaaaaes 83
ISOLINKDIIVETIMEDYN ..ttt e ettt oo e e ettt e bt oo oo et e et bbbt e e e e et e bbb e e e e e eeebbbaaaaaaaes 84
ISOLINKSEIVICEATEA ... ittt e oo e ettt b e oo e e et ettt e e e e et e bbb e e e e e e eebbbnaaaaaes 84
[T0] 2o AP TUOPUPTTTTIRUOPPIN 85
(0] 2o] V] o=) TSP SO PP PTTTTIRUOPIN 86
ISOPOIYRANAOMNIZATION ottt e ettt e e e e e e et bbb e e e e e et ettt e e e e e e eebbbaaaaaaes 86
[01 (o 1= TSP SO UPPTTTIRUOPPIN 86
[01 (o111« TSP UOPU PPN 87
Matrix

Matrix2
Y N g D 21U (=] S TSP SO PUPTTTTIRUOPPIN
Y T g D D) o TSP UOPUPTTTTIRUOPIN
Y T g D B} 1 TSP TSP PTTTTIRUOPPIN
Matrix DynOut
Y N1 g DO 1T PO SUP PPN
MatrixPOut

NEATESIDYN L.ttt
N LR (0] o 1= o TP PSP PTRPPPTIRR
NEATESIOPENDYN ..ttt ettt et ettt ettt e e e e 90
NOAECOSE 1.ttt 91

© 2022 RouteWare / Uffe Kousgaard

Contents VI

[N 010 V7= I o YU o o Pt 91

RelativeSpeed .
ROUTECOSE .. ee ittt et et ettt et et et
Lo 10N =Y T o T TSP UPPTTTI RPN
Lo UL 1T 1Y o PP
RouteTime
SIECTCIOSEALINKS .. iiiettii ittt ettt e ettt e e ettt et e 92
Y= (O == 1 o 1<) PN 92
RS T (O o F1 PPN 92
SO ASIESE .. iiiii it 93
1= T o 1 USRS 93
=Y] o] (=T APPSR 93
Y= 5] ST o] I] 4= PN 93
1= T T PP PPPTTN 93
RS T=T 0 V1 o PPN 93
Y (] [V] B oI Y= Yol @] o) (1 41 2= X4 o o SN 94
7 11 1= U 1 1 PRSP PPPTTTN 94
] =Tt 11 1= TP PPPTTTN 94
RS TU T ¢ 1IN = 65T 1 4 o PSS 94
B I 1 =T: Uo E- PP SS PP PPPT T 94
L= o1 0T AN 4 1 o P 95
TUFPNMOGAE ettt ettt e oot et e e et e e et e e et e e e et e ettt e e r e et e e e s e e e n e e s 95
UTUINATTOWET .ottt n e e ettt et e e et e e nn e et et e et n e e e e e e e s nn e n e e e e eennnes 96
PrO METNOUS et 96
o] = 5] = o T PP 96
[@7=T) =Ty o Tor= L4 o o TP PPPPPPT PRt 96
[O7=T 1 =T oo [PP PPPPPPT PRt 96
5101 5] {3 V7 2 o] o 0 - Lo o TN
Lo 1O] {1 1Y VY o o (0 Y= T o N
[T a1 @013) VY o] o] (0 Y- o] o N
MST.oiiiiiiiiiiieeieeeeeeeeees .
R ZeTU (=1 =T Te |37 VY o] o] (o= U] o TN
£S5 1 T To 4 11T [PP
5 (1= =T T TS PPTTTR
SubNet.... .
SUBDNEELIMITS .ottt e e e et r e e e et e s
L= PP
UNUSEALINKS ...ttt ettt e e ettt e e e et e n e

7 TRouteCalc

RO ULE DY N ettt et a e e e e e e e e e naan 104
ROULEDYNEX ettt ettt ettt ettt et ettt e et e e e e e e et e a e e e e naan 104
ROUTEPAITS ..ottt ettt e oo e ettt oo oo e et ettt e e e e e ettt h o2 e e et eat b e e e e e eesaba e e eaeennbanaaans 104
RoutePairsP 104
ROUTEPAITSGIOUDPSIZE ... ittt oo et ettt e oo e ettt ta e e e e e et et bt e e e e e esaaa e e eeeensnnnnaaeas 105
ROUTE MALrixX METNOMS ...ttt e e e ettt e e e e e et et e e e e e e ebab e e e e e eesbanaaeas 105
[(oI 11 1=Y Yoo £SO UUUPPPRPPRRRRPRY 105

AIEROULEDY L. ...ttt e oottt oo oo ettt e b bt e oo e e e et e bb e e e e e e et bbb e e e e e et bba e eaaen 105

2] (oo =T TSP SOPUPPPTION 106

© 2022 RouteWare / Uffe Kousgaard

[O11 13RS Tod @1 U PSSP 106
Hierarchy .
MatriXDYNCUIDISOCHIONE it et e e et e et e et e e et eeenn s 107
L LD)2 O oo T =P
[RLe L= Y6 [N o o =] A PP PTUPPPTINN
RouteDynApproach....
RouteDynApproachEx
ST 11T = Vo] 77 =Y PP
ST T o Lo T P
SUBDNEBEEX. . ettt oottt e e
L= i o ANST] T [T 1T o PP
TrafficAssignmentDyn
ST I AT o | 0T =Yoo o

(O3 F=T: L= PSP PPPTR PPt
CalcDirectDist .
CalCSIARINMOULATITAY ...ttt ettt oo oottt oo e e et ettt oo e e e et et b e e e e e et ee b e e e e e eesba e eeeeeesabnnaeaaeeees 111
(OleYaTor: 1LY E-Na T o] a11Y (o o [T U SUPPPPINN 111

ROUNGAD OUECOUNTING -1ttt ettt e ettt e e et ettt e e e e e et et b e e e e e et es b e e e e e eesaba e eeeeeesbnnnaaaas 113

RoundTrip .. . 113
ROUTE L. et e e e e e e b e e e e e e e b e e e e e e bbb e e e aaa b 113
RO ULE DY N ettt et a e e e e e e e e e naan 113
ROULELISE .. 113
ROUTELISIDYN ...ttt ettt e e ettt oo oo e ettt oo oo e ettt ek e e e e e et et b e e e e e et et b e e e e e eesaaa e aeaeeenbannaaaas 113
ST -1 o U o TP SUPPPPIN 113
STLe 1=1 VY 4 - AU SUPPPPIN 114
SILe 1= @01 7N - | O SUPPPPINN 114
SOMEAINAEX ittt 114

TIMESTAMPIOIIMIAL ...t e oottt e e et ettt e e e ettt ab e e e e e e ebb b e e e e e eeebba e e eeeeennnanns 115
e] 2= L 001 PP UUUPPPPPTR 115
e 1= UL D PP UUUPPPPTTR 115
e 12 U 10 = ST UUUPPPPTPR 115
O L0 =D G S PSPPSRI UPPTPPNN 116
ViaList
9 TVoronoi......

[D7o 10T 1 1o 11 | PP UUPPPPPPRRROPRY 118
o ol U] (PP PP PR PPPPI 118
(115111 (=T U SUPPPPIN 119
1 PP PPN 119
INCIUAEHOIES .ot e e oottt e o2 e e et et e e e e e et et b e e e e e e eeaaa e e e aeeesbnanaaaas 119
INCIUAEISIANGS ...t e oo ettt e o2 e e ettt e e e e e et et e e e e e e esab e e eeeensbnaaaeas 119
=TS @ U4 o U PP UUUPPPPPPRRPPPR 120

© 2022 RouteWare / Uffe Kousgaard

Contents IX

Zfieldname .

O T € 1 1 =

ADARTEIA .o
Adding objects
J X o] =] o | TP PPTTTTRUOPPIN
F X o] =] o | o2 TP O U PPTTTURTOPPIN
YN 0| o 1= TSP UOUUPPTTTURPTOPPIN

COMPACTMIF ettt e ettt e et e et e et e et et e e e e e r e e et e e naa e
(00eTo] {o 1)V TP SUPPPPIN

FilelsFull . .
(1T o TN ST @ PPN
(T T= 1 g - | PSP PPPTR PPt
GrEAtCITCIEDISE ..oiiiiiiiiiiiiiieee ettt 128
MITAB _SUPPOTITEA .ttt ettt e ettt oo e et ettt e oo e et ettt e a2 e e et et b e e e e e e eabha e e e e eeesbbn e eeaeeessannaaans 128
OPtIMIZEPLINESSECIIONS ...ttt ettt e e ettt e e e e ettt e e e et ettt e e e e e e eeb b e e e e e eesbbn e e eeeeeennanns 128

TRec....

Part Il Optimization classes 131

N O o) 411114 USSP 132

23S o 10 11 2 132
(=T 0 T T3 1§/ 132

© 2022 RouteWare / Uffe Kousgaard

X RW Net 4

L8 1T 1 2SS 134
Cluster3 ...

o T o U (PP PPPTR PP 140
EX@CULE UL ..ot e e e ettt e oo e e ettt h e e e e e et et e e e e e e ebaba e e e aeennbanaaaas 140
Y g D €=] ad food T PP UUUPPPPPPRRPIRY 140
L= 1Tl 11 = TP UUUPPPUPPRRRSPRY 140
PerCeNtWIithOUTIMPIOVE STOP ..uuiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e et et e e e e e e eeaba e e e e eeesbanaaeas 141
2 LaLo Y=Y =T o [PPSO UUPPPPPTRRRPRY 141
SToTa (=To L[To L= G PP UUPPPPINN 141

TimeLimit ...

I N ST = o] U | o PP 141
=Y o | =T Ol U T o RO UUUPPPPPPRRRPRY 142
EX@CULECUTIDFUIL ..ottt e e e ettt e e e e e et et e e e e e e ebab e e e e e ensbaaaaeas 142
Y g D €=] ad food T PP UUPPPPPPRRRUPRY 142
ST Lo 1= | IR SUPPPPINN 143
SidelnArray 143
ST =10 11 PP P P PP UPUPPPPPPPPPPPPPRY 143
S1Le 1@ 01 7N - | U SUPPPPINN 143

Part IV Helper Classes 145

N I 2 7T I 1 PP 146
LI (e T = T PP SUPPPPPT 146
LI e (o (0101 a1 (=] I PSSP PPPT 146
TGP SIMAECHLISE ...ttt 146
I a0 Y= o T T N 146
I (=T N
IR (= L= I €N
TLocationList
TP OILISE 1.
LIRS L=) N
TTrafficList ...

A = 1 10 - Y/

© 2022 RouteWare / Uffe Kousgaard

Contents X

Part

T2 PSP 149
LI 011V =T =] = 4 o o 149
LI 221 Lo o o 4 1 149

NEXTDOUDIE ...ttt oo oottt e oo e e ettt e o2 e e et et b e e e e e et ab e e e e e e eebh e e e e e eeeaa e aaan 149

N L= [PP PP PR TPPPPI 150

(2 LaLo (o] 11 1 4= O UUUPPPPPPRRRPRY 150

ST=Y S T=T=To TP UPPPPPINN 150
LI R Le L= (o [0 FoTT 3 o= =T o [150
TROAACIASSTUIMCOST ..eetiiiiiii et e et e et e e et e e et 150
LIRS 8o S 151
IO L gl =) T TP PP 151
Simple types 153
] T | TP 154
DOUDBIE L e e aaa 154
LAY o T o PP 154
10T =To L= TP 154
G P 154
LI L1 e 11 | PSP 154
172 0 . 0 = Lo o 154
Y] oL oY= Lol oV AN o - Y P 154
QIO oo [T == Vo 1= 155
1o] 01 S PO 155
TCONCALENALIONMOTEeiieeie e et e et e et e e e et e e e et 155
O e o] o (010 1] £ 1= TSP 155
QL@ e o] o T a =1 =10 | 11 S 155
10 1] PP 156
IO 0253 Y - 156
LI OA UL o111 156
QLI 1S3 = Va1 =10 | | P 156
LI = o] 4 ©o o [P PT 156
LI 1 =T T T PSP 157
LI (o = U =0T | S 157
LI (o= LA =l o T g1 Y - YU 157
LI O To A oY a1 A = Y = 157
LI (0 = 1 =3 PSP 157
LI C1 15 =1 o 157
LLC1 5] o1 11T L PP 157
TGPSIMALCH ... 158
I8 0T oo) o o =t] 158

© 2022 RouteWare / Uffe Kousgaard

Xl

RW Net 4

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

LIRS0 =T N o - 158
LI oY o3 1 [o U 158
LI o Yo 1 o] o1 N1 1 =2 158
L= L) PP 159
LAY = 0 o PP 159
IS U] 1 o= A (= o o P 159
LAY | T= = 1 =T o P 159
1071 = o PSR 159
LAY L= 0 YA T L d o PSR 160
LAY 5377 2] oL 1P 160
LAYV 0] 0T 1 o 160
B 1S3 V2 1.1 0101 I 2 = 160
LI o= 0 1Y 1= 160
LI =] 01T o | S PP 160
1O PO UPPPPPPRRTRN 161
TROUL e e et et e et 161
B 15S] =T] o 0 1 = L 161
LI I £ 162
LIRS 1470 T [162
TVEITEXCOUNT ..ottt et e et et et et e e et e e et e et e e e e ennas 162
157 S RPRRT 162
LIV A =Y - Y 162
LI] 181 4= P 162
JLIY/o] o] 11011170 Lo L= PSP 163
IR AT 01 e 1A - 163

© 2022 RouteWare / Uffe Kousgaard

Part |

User Manual

RW Net 4

1
11

1.2

User Manual

Introduction

RW Net 4.42

RW Net is a general purpose routing library. It is flexible enough to be used together with almost any
GIS system available and it will also work together with most programming tools on the market.

RW Net uses it's own format for storing street networks and included are functions for importing[26
street databases from most common GIS formats. This topological format is targeted towards routing
purposes and is described here[15. RW Net always loads the topological network into memory
before doing any calculations.

The basic structure in the topological network is a one-to-one relationship, where the first link in the
network matches the first record in your GIS file, second link matches second record etc. This
makes the network files very compact and fast to use.

All attribute information (road class, one-way information etc.) is held in a separate data structure
which can easily be updated without having to re-create the topological network.

Feature matrix

Features
Standard Pro
Network size 500,000 links 1,000,000,000 links
(** I_Bhl)
Import! 261 Single file only Multiple files
Import formats MIF, SHP, TAB MIF, SHP, TAB,
events
[import froml 351 SQL database (MS SQL, Oracle, Yes
PostGIS, Geopackage)
Node-2-node routing Yes Yes
|Matrices (*) Yes Yes
|Sgatial searches| 73 Yes Yes
Max list length (*) 300 items No limit
Shortest / fastest / cheapest route Yes Yes
32 road classes Yes Yes
Geographic & projected coordinates! 97 Yes Yes
Alpha parameter 105 for improved speed Yes Yes
Output to TAB, MIF, SHP, KML, GML, CSV, DBF, Yes Yes
array, GeoJSON, GPX
Turn restrictions Yes Yes
Limits| 83 (max weight, width etc.) Yes Yes
|Dynamic segmentation Yes Yes
Driving directions| 10 (*) Yes Yes
Travelling salesman optimization! 5 (TSP) (*) Symmetrical Asymmetrical too
Nearest N facilities| 821 (*) Yes Yes
Isochrone functions - link based (*) Yes Yes
lisochrone functions - voronoil 1181 based (*) Yes Yes
[Export of network! 4% Yes Yes

© 2022 RouteWare / Uffe Kousgaard

User Manual 3

Topological checks (subnets| 08, missing snap| 74, Yes, up to 10,000 Yes
[parallel links[sd), cul-de-sac[47), overpasses[7 etc.) links

[Encryption of network files|28) Yes
Smoothing of isochrones| 1201 Yes
Hierarchical routing! 63 Yes
Alternative routes| 051 Yes
Approach based routing] o0 Yes
Multi-threaded calculation| 94 Yes
‘TSP with curb aEEroachli'h Yes
Mixed Rural Postman Problem (arc routing) Yes
Join links| 72 Yes
Clustering| 132 Yes
Minimum Spanning Tree|e8) Yes
\Weighted Center of graph!oel Yes
Traffic Assignment me& Yes

Functions marked with (*) only accepts 300 items in Standard version.
System requirements
Available for:

e NET Framework 4.8
e .NET Core 6.0

e Delphi XE5 - XE6 - XE7 - XE8 - 10 - 10.1 - 10.2 - 10.3 - 10.4 - 11.1 (32/64-bit)

e DLL[12 for 32-bit Mapinfo / MapBasic 7.5 - 15.0
e DLL[13 for 64-bit MapInfo / MapBasic 15.2.2 -

Some versions are only available in Pro version - see license terms[21.
All versions are fully self-contained and 100% "native" on each their own platform (no "wrappers").
RW Net 4 is 100% Unicode enabled.

The older RW Net 2 also includes versions for older Delphi compilers.

Quick overview
A normal setup includes these steps:

1. Import geographic coordinate data into RW Net's own format with class Timport/ 26}
Import attribute information such as street names, one-way information etc. with class
TimportAttributes[3H)

Open the generated files with class TNetwork/| 38

Perform spatial searches with class TSpatialSearch[73 or

Perform isochrone calculations (one-to-many, matrices etc.?_ve‘/ith class TCalc[78) or
Perform one-to-one route calculation with class TRouteCalc |10

ousw

Routes can be exported to a lot of standard formats using one of the TGISwrite[:23 classes.
Several of the functions write directly to one of the GIS formats.

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

15

Drivetime isochrones

A typical use of the software is the calculation of drivetime isochrones, showing how far you can get
in 5, 10, 15 minutes etc.
We have explained the various options in more detail here|16).

Optimization

Matrices can be used in one of the TSP classes (TTSP[:8 and TTSPcurb[}) to perform an
optimization of the sequence.

TOptimizer|[3% is used for creating territories according to various criteria; Load, size etc.
Network terminology
Terminology used to describe the various elements of a street network:

A link consists of several connected vertices (2 or more, blue squares on the map below). The first
vertex of a link is called the from-node and the last vertex is called the to-node. See function
Link2FromNode[5% and Link2ToNode[54\.

Most of the nodes share coordinates with nodes of other links. The humber of links sharing a node
is referred to as the degree of the node. You should normally never reach more than 10. See
function Degree[4M.

A node is also called an intersection - even if the degree is 1 or 2. A link where one of the nodes
has degree 1 is called a dangling link. A node with degree 2 is called a pseudo-node (see function
Join[78). The red node on the map is such a pseudo-node.

A link is identified by it's internal ID (Magenta text on the map: 1, 2, 3), which corresponds to the
record ID's of the input dataset used by function Timport.execute 28,

A node is identified by it's ID (Black text on the map: 1, 2, 3). Node ID's are primarily ordered by
degree in descending order and secondarily by x-coordinate in ascending order. Node ID's are
assigned during network import and can not be controlled by the user.

A location is a position on a link: e.g. 50% along link 70 - counted in the same direction as that the
link has been digitized in. This appr. matches the cursor on the map below. Locations are used
when doing dynamic routing. The percentage needs to be between 0 and 1 (both included).

© 2022 RouteWare / Uffe Kousgaard

User Manual 5

\ &l
Degras =
57 on72 76 IRRES
o1 //j"j// T REREEY
- 0O 3 3@
93 g .f;-"’\ O 4 o
P L -
2 41? Megs 4 .
" 4 . eg1 - o
\ 78 \ \ T
n 2
!
4 5 74 - Y
/ - 1,;-'!-._,,/-". o5 13 ?4"! .E_Z_'I _ﬁi — w036, 76
a57 q-.\""-__k 3 \\l e 20 l .H-H.x.
L R “a 75027 2 T
1 G Y]
1 | 5'59'3'! "5_.'“'13 Pz i
&
-{.I__'_,_,_,—'—'—'_. M .ﬁgl—thH JII- "‘\..R. ?:Ef. 4
0 17 N, 2:}1
o0 * / 723 .
\ e o70—10 ?#gi' / 2
\ 20 d 22 /
) .
62 .._2_1_{ i .\33 40
63 10 Fi
n { i k 23
15 7
057 a6 h::; /
—a 1} a2
% 8 =720 A2
\n fl { b T

1.6 Link information
1.6.1 Attributes

The attribute for each link in the network play a key role in defining how the link is used in the
routing calculations. This is defined through a bit-pattern:

1. Road class, 0-31 (5 bits)

These have no predefined meaning, but their value can be translated into a drive time using function
CalculateTime| 4

2. Hierarchy (*), 1-5, (3 bits, 32-64-128, bit 5-7)

A topological hierarchy can be used for speeding up TRouteCalc [} calculations.
0 is also allowed, if you don't use the hierarchy at all.

See further explanation here: Hierarchy| &%,

3. No-drive through (*), true/false (1 bit, 256, bit 8)

This can be used to define areas, where you are not allowed to drive through to get to the target.
Applies to TRouteCalc 08 calculations.

See TNetwork.NoDriveThroughCheck(5%, TNetwork.NoDriveThroughinit/57 and
TRouteCalc.NoDriveThrough| ot

4. One-way, To-From direction not allowed, (1 bit, 512, bit 9)

5. One-way, From-To direction not allowed, (1 bit, 1024, bit 10)

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

1611

If both bit 9 and 10 are set, the link is closed for driving.

6. Roundabout, true/false (1 bit, 2048, bit 11)
Can be used in creating driving directions.

7. Non-driving link, such as a ferry or car-train, true/false (1 bit, 4096, bit 12)
Can be used in creating driving directions.

8. True if not allowed to make U-turns at the From-end of the link. (1 bit, 8192, bit 13)
9. True if not allowed to make U-turns at the To-end of the link. (1 bit, 16384, bit 14)
10. SkiplnSearch (*), true/false (1 bit, 32768, bit 15)

For use with function NearestLocation[73
See SkipLinks2BitArray|[63) and TSpatialSearch.SkipLinks[7H

(*): Changed from RW Net 2.
An example:

A road of class 4, which can only be travelled in the direction of digitization: 4 + 512 = 516.

Hierarchy

Some street databases has special attributes for the most important streets, the ones being used as
part of long routes.

This will typically be motorways, but can also be ferries, bridges and some minor streets which are
required to have a connected network.

The advantages of restricting routes to these more important streets are:

 Much faster point-2-point route calculations for long routes (TRouteCalc [10}).
o Simpler routes, which doesn't make short-cuts via minor roads to make a long route a little
shorter / faster.

The map below shows an example from TomTom Multinet data with 5 layers of importance
(hierarchies):

© 2022 RouteWare / Uffe Kousgaard

User Manual 7

RW Net 4 uses a method where the calculation of the route is restricted to level 1..X as soon as level
X has been reached on the route unless you are
within a certain distance Y of the final target. Then additional levels are included in the search again.

For the algorithm to work properly the parameter Y has to be supplied for levels 2 to 5. Level 1 (the
top level) is of course always included in the search.

The best values for these parameters depend on the geometric properties of the network and how
the hierarchy attribute has been setup.

If you have less than 5 levels in your data source - 3 for instance - use levels 1, 2 and 3.

If you choose small parameters values, a smaller part of the network is considered when you get
close to the target and this improves calculation speed.

The downside is you risk not finding the target at all (!), because there are no major streets within
the limits you have defined.

The solution to this problem is to re-calculate without the hierarchy setting or just use a more relaxed
setting (larger parameter values).

Such re-calculations are costly and when choosing parameters it is important to find a balance
between normal, fast calculations and the slow re-calculations.

Functions for working with hierarchies:

TNetwork.Hierarchy[sh For getting / setting hierarchy for a single link

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

1.6.2

1.6.3

1.6.4

TRouteCalc.Hierarchy | bFor enabling / disabling hierarchy for a calculation
TRouteCalc.SetHierarchy For defining parameters for the hierarchy - suggestions for TomTom and
Levell 108 HERE databases

External ID

Each link can have an associated external ID as opposed to the internal ID (1, 2, 3...). The external
ID can be either string based, integer (0..2147483647) or int64 (0.."really big") based.

The advantage is an external ID can be constant over time and globally unique - even when working
with a subset of a larger database.

RW Net includes functions for translating between internal and external ID, but otherwise all
functions uses internal ID for input / output.

If you are using external ID's there are additional limits on the number of links in your network:

32-bit integer 500 million links

64-bit integer 250 miillion links

string If string is 38 char GUID, up to appr. 30 million links
string, extended 1000 million links

The last option is only possible with library versions from after 3-10-2019 (RW Net 4.36 or more
lrz?lizing;)énerated in such mode is >2 GB and are not compatible with older releases.

Limit

Besides the routing options available as part of the attribute[57 bit pattern, it is also possible to
define 2 other kind of route restrictions for links in the network:

1. A scalar quantity such as a maximum weight, height, width etc. If the limit for a certain link in
the network is 100 and you calculate a route for a vehicle with a value >100, that link will be avoided
in the route. It is mandatory to scale your limits into the 1-255 interval.

2. Abit pattern for defining special links such as ferries, toll roads etc. which you may want to

avoid in your routing. If the limit for a link is 3 = 00000011 it may mean it is both a ferry and a toll
"road" (most ferries are not free, so that seems logical). If your value has either bit 1 or 2 set, that
link will be avoided in the route. It is possible to define 8 such bits within each limit.

For both types, a link value of 0 means no limitations at all.

A maximum of 9 such limitations can be created.

See TImportAttributes[3®, TNetwork[38 and TCalc.SetLimit[62).

Road name

It is possible to have a road name for all links. Multiple sets can be created so a link can have the
name "Main Street" in one setup, but "Main Street, Smalltown" in another setup. Or use different
languages.

Road names are stored using Unicode and always converted before output, depending upon the
chosen file format and codepage.

© 2022 RouteWare / Uffe Kousgaard

User Manual 9

1.7

1.8

1.9

Road names can be used in driving directions[::% and in functions ExgortLinkslzﬁ and Join[79\,
Turn restrictions
There are 2 types of restricted turns:

e Banned turns
¢ Delayed turns

Normally you will be using banned turns only, since for most normal routing purposes, setting
different road speeds for road classes are sufficient for giving a realistic route choice.

Generally you can change choice of route A LOT by using wrong values for delays, so take care.

All methods about turn restrictions has an index parameter, which points to one of the turn indices,
created by CreateArrayTurn| 4.

If you add a turn restriction, where one of the links making up the restriction is already marked as
one-way, it is skipped.

See TNetwork. TurnimportTXT[67 for the text format to use for import.

Coordinate units
Two kind of coordinate units are supported:

¢ Spheric / Latitude-longitude (global / local)
e Cartesian / Projected (local)

When working with spheric coordinates, all distance calculations are performed using great circle
distances and the Earth is considered a perfect sphere with radius 6378.13 km.

When working with Cartesian coordinates, all distance calculations are performed using straight
Pythagoras formula. Several different Cartesian units are supported.

Global projections such as Web Mercator and more are not supported. They use meters as
coordinate unit, but the scale factor depends upon the latitude.

If you use it, you will not get any error messages, but the lengths will come out wrong, when you are
not on Equator.

It is worth noting, that RW Net never performs any transformation between coordinate systems. It
always works with the native coordinates of the base dataset used when creating the network. It will
return strange results, if you set the coordinates as spheric, while they are really meters or vice-
versa. Itis YOUR responsibility to make sure this is correct.

See also TCoordinateUnit/sh

Coordinate system

When importing[28 from a GIS street database, information about the coordinate system is stored in
the INI file.

This is used for generating output files with class TGISwriter [z} - either internally or by the user.

Depending on the output formats you plan to use, this information is needed:

© 2022 RouteWare / Uffe Kousgaard

10 RW Net 4

TAB /| MIF Coordsys clause

EE T

GML / GeoJSON EPSG code

KML / GPX Always uses lat/long, WGS 84

These should be set before importing.
1.10 Units
RW Net 4 uses metrical units almost everywhere in the setup:

e Distances: Km
o Speeds: Knm/h
e Time: Minutes

The exception is miles & mph can be used in a few output-to-file functions, where the output is
directly aimed at end-users:

See TCalc.DistanceUnit[83}, TVoronoi.MilesOutput/:zh and TDrivingDirections. DistanceUnit| 13 if you
prefer miles.

1.11 File structure

When a network is imported, several binary files are created on disk, which together define the
topological network. This gives a short description of the content of the various files:

Filename Mandato [Encrypt |Explanation

ry ed
Attribute.bin X JAttributes of links
Coord.bin X X Coordinates of all intersections (start / end node)
Coord3.bin X Coordinates of the rest of the vertices
Coord3i.bin X X Jindex into Coord3.bin
Index1.bin & Index for conversion between link id (1, 2, 3..) and external
index2.bin id.
Length.bin X X Length of all links in the network
Limit?.bin X___|Information about limits on links such as max heights efc.
Link.bin & node.bin] X X___|information about link-node relationship ("topology")
Roadname??.bin List of possible road names, Unicode
Roadnumber??.bin Index into roadname??.bin
Rwnet config.ini X X INI file, text format
Spatialindex.bin |Spatial index of both links and nodes

Turn restrictions can be stored in files with flexible naming.

If you set the Encryption[28 property, files marked as such in the table will be encrypted during
creation and decrypted during load.

© 2022 RouteWare / Uffe Kousgaard

User Manual 11

1.12 Password protection
You need to enter a password when using a non time-limited version of RW Net.

Call method InitPassword for any of these classes after instantiation:
Timportl 26), TNetwork[38), TTSP .8, TTSPcurbl.h

It is sufficient to supply the password once in an application.

1.13 Progress events
Progress events are available for these methods:

Timport.execute[28) (+)
TimportAttributes.execute*[30 (+)
TImportSQL.executeMSSQL [381 (+)
TimportSQL.executeOracle[3M (+)
TImportSQL.executePOSTGIS | 371 (+)

TNetwork. AttributeSave[43)
TNetwork. ExportLinks| 48)
TNetwork. ExportLocationList[53
TNetwork. ExportNodes| 561
TNetwork.Join[79
TNetwork.ObjectCheck[58)
TNetwork.Open| 58}

TNetwork. ParallelLinks[5$\
TNetwork. TurnimportTXT[67

TSpatialSearch.FindNonConnected| 74
TSpatialSearch.FindNonConnectedNodes(741
TSpatialSearch.FindOverPasses| 74
TSpatialSearch.SplitAndSnap| 78

TCalc.Matrix[87 (+)
TCalc.Matrix2[8h (+)
TCalc.MatrixDyn| 887 (+)
TCalc.MatrixOut]| 88 %
TCalc.MatrixDynQut| 881 (+)
TCalc.MatrixPOut| 83} (+)
TCalc.SubNet][oh

TRouteCalc.MatrixDynCurblsoChrone[0h
TRouteCalc. MatrixDynCurbRoute [10
TRouteCalc.SubNetEx[o)

TTSP.execute[1B (+)
TTSPcurb.executecurb[3 (+)

TVoronoi.execute[11H

Assign the OnProgress event to follow progress and eventually cancel the calculations. The events
steps from 0 to 100 and as a minimum for every 2 seconds.

© 2022 RouteWare / Uffe Kousgaard

12 RW Net 4

(+): Cancel request is supported in these methods. Check property Cancelled afterwards to check if
the user cancelled.

1.14 MapBasic DLL
The rwnet4.dll is aimed for use with Mapinfo / MapBasic.

Since Maplnfo is a single user application, we have made several changes to make development
easier.

Rather than doing Create/Free methods, we use pre-allocated objects.
Objects are referenced either indirectly (single instance) or by their index (multi instance).

Classes referenced indirectly:

TAltRoute[s
TAltRouteList[4H
TCalc[78)/ TRouteCalc 10D
TDrivingDirections[1:
TGISwriter[:2%
Timport[28)
TimportAttributes[30
TNetwork| 381

TOptimizer [1:3)
TPolyGeneration[+%)
TRandom[18
TRoadClassSpeed|1sh
TRoadClassTurnCost/=3)
TRoute[sh
TSpatialSearch[73
TStepList/ A
TTrafficList/h

TTSP[

TTSPcurbl=h
TVoronoi[18

Classes / types referenced by index (handle):

Number of instances | Null-element
TApproachArray [59 2
TBitArray [18
TCostArray | sH
TCurbMatrix| 155
TFloatPointArray Ex| 5%
TintegerArray [155)

Tl ntegerListm
TLocationList/ N

TMatrix| 5%
TStringList/:sh
T\NordArraylE?I

Yes
Yes

Yes
Yes

Yes

NININININININIFPIN]W

© 2022 RouteWare / Uffe Kousgaard

User Manual 13

If null-element is true, you can pass 0 as index / handle, when you want to pass nil as parameter.

Function naming convention
TImport.Execute becomes TImport_Execute.
TCalc.IsoCost becomes TCalc_IsoCost.

etc.

Some method names have been shortened due to max length = 31 characters.
TCalc[78) and TRouteCalc[10h are both referenced as TCalc.

All definitions can be seen in the rwnet4.def file along with a sample application, covering key areas.

Two versions exists:
o rwnet4_32.def for Maplinfo 10.0-15.0
o rwnetd.def for Mapinfo 15.2.2 and up.

Password initialization
Call method "InitPassword[17",

Codepage

Since RW Net 4 is Unicode enabled and Mapbasic isn't, it is required to do an internal conversion in
all function calls involving strings.

This is handled automatically through a global variable, which sets the codepage you are using in
MapBasic.

Default is the system codepage.

Methods: GetCodepage / SetCodepage.

GIS output format

There is a global variable for output format, which is gfMITAB[:sh by default.
This means it is skipped from all function calls having a gisformat parameter.
Methods: GetGlSformat / SetGlSformat.

CharacterSet

You can get the current codepage for your table by calling function CharSet2CP, where you pass
the return value from Tablelnfo(tableid, TAB_INFO_CHARSET).

Then call TNetwork_SetCodepage|481 to define which codepage is used in all output - also from
TDrivingDirections etc.

Colours
Colours are read/set directly in Maplnfo colour format (RGB <> BGR), while the .NET and VCL
versions uses windows colour scheme.

Error handling

If an error happens when calling a method, you can use one of these 2 functions to test it:
GetLastExceptionClass

GetLastExceptionMessage

The messages are cleared after each successful method call.

Progress Events
These can all be turned on/off by calling ShowProgress with 0/1 as parameter.
The progress is then shown with a built-in dialog.

Missing functionality compared with VCL / .NET version
e GlSarray[#h output as format

© 2022 RouteWare / Uffe Kousgaard

14

RW Net 4

1.15

1.16

e Direct access to TPolyGeneration[

TAB files

TAB files are the native file format of Mapinfo Professional.
Two main versions exist:

e The original TAB, allowing up to 2 GB files.
o The extended TAB (TABX), without this limitation and allowing unicode for strings.

RW Net 4 reads both of these natively and can also update them natively (attribute information), but
writing them from scratch requires a 3rd party library:

MITAB
This is an open source and free library able to write TAB files.
Find it on RouteWare website, download section.

EFAL
This is Preciselys free library, able to write TAB and TABx files.
Find it here: https://support.precisely.com/product-downloads/item/mapinfo-efal-sdk-download/

MFAL
This is Preciselys library, able to write TAB files.
Not publicly available.

All 3 exists in both 32 and 64-bit versions.

Large datasets

MITAB and MFAL are both very fast, while EFAL easily uses 10 times as much time on the same
dataset.

In fact, it may be faster to write to MIF and then leave it to Maplnfo Pro to import from MIF to TAB.

Data Sources

At RouteWare website you will find a list of street data providers for various parts of the world. Data
from these providers usually have a topological correct structure, which means they are almost
ready to be used in RW Net.

But how should your own street data look like, in order to be used in RW Net?

They need to snap

They need to split at intersections

The network should be plane unless there is an overpass
You should avoid subnets (islands)

You should avoid very long links, which have a negative impact on speed of certain
calculations

Below is shown some examples on networks, which are NOT correct, but all look correct unless you
check out the details:

Example 1. Missing shap at an intersection

This means the network doesn't connect and the movement to / from the disconnected section, isn't
possible. In the example below, the gap is just 1 meter and can't be seen at normal zoom levels. Use
function FindNonConnected[74 to detect these situations.

© 2022 RouteWare / Uffe Kousgaard

User Manual 15

Example 2: Split at overpass / underpass

This means a lot of impossible turn movements are suddenly made possible. This is a typical
problem with TIGER data.

There is no single logical check to detect these situations, it is a simple shortcoming of the data
source, if there are no Z-levels[16),

Example 3: Doesn't split/break at intersections
This means turns are not possible at most intersections.
Use function Split[78) or FindNonConnected[741 to detect where this is most likely an issue.

Example 4: Double digitization with two street names, here name + route number
Not a really big problem, but the result of a route calculation may include one of the two streets in a
more or less random fashion.

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

16
Use function ParallelLinks[59 to detect such situations.
W 120th Ave
US Hwy 287
Example 5: Multi sectioned polylines
Polylines with more than 1 section are ignored. They will not be part of any route, since there is no
logical start/end of the link.
These will be reported during network import in either ImportErrorList[23) or in the
network_report.txt/23).
1.17 Z-Levels
Z-level is an integer from -9 to 9, which specifies the vertical level of streets: One number for the
start of the link (Z-from) and one for the end of the link (Z-to).
The information is used during the import[26) process to adjust coordinates slightly (10 cm) to
prevent nodes at different Z-levels to have the same coordinates. The modification is only applied, if
Z-level<>0.
Itis commonly found in commercial street databases (HERE, TomTom, ITN etc.).
If your dataset contains fromnode and tonode for the links instead of Z-level information, use
ExternalNodeld2ZL evels[51) for a transformation.
1.18 Isochrones - overview

Generating nice-looking isochrones has always been a key functionality of routing software and RW
Net 4 offers several methods, which are shown below.

As you will see, generating the same N km isochrone with different methods do not give the exact
same outpuit.

© 2022 RouteWare / Uffe Kousgaard

User Manual 17

That is also why we generally do not recommend using the isochrones for point-in-polygon analysis
as a way of finding out which customers are less then N km away.

Rather use the various matrix functions for finding distance between multiple points. This also allows
you to include the off-road part in the calculations.

This table gives an overview of the key differences between the methods:

DriveTimeSimple| Voronoi lisoLinkDriveTimedisoLinkDriveTim Alpha
Dyn[sh [uh) yn[sd elsd shapes| 98}
|Input 1 location nodes & 1 location nodes nodes &
locations locations
TPolyGeneration Yes Yes
input
Speed of 36 ms 47 ms 78 ms 109 ms 125 ms
calculations
Holes Yes
lislands Yes Yes
Doughnut mode Yes Yes
Smoothing Yes Yes
Shown on map as: Blue line Yellow (not shown) Black network | Brown line
polygon

Alpha shapes and DriveTimeSimpleDyn both tries to follow the perimeter of the network, which can
be reached from the starting point(s).

They do not take into consideration any unreachable parts of the network (the grey lines), so they
may get included in the output polygon anyway.

Voronoi on the other hand follows the line between what can be reached (black network) and what
can not be reached (grey network).

Alpha shapes can not be calculated in doughnut mode, since 2 polygons may actually be
intersecting, due to the way they are calculated.

IsoLinkDriveTime(Dyn) is the most accurate, so for comparison it is included. But it is a much
different kind of output.

Timings above are for the 7 km isochrones shown below with addnodes = 0.3 km[86Y:

NOTE: Has not been updated, after the performance improvements in version 4.30.

© 2022 RouteWare / Uffe Kousgaard

18 RW Net 4

1.19 Check List

Sometimes a calculation returns a different result (route) compared to what you expected or you get
no route at all. Both situations are due to issues somewhere in the network and these can be hard to
locate.

This is a list of things to check:

e Look inside network_report.txt (generated when calling Timport.execute| 28):

Are you using the latest version of RW Net?
Is the coordinate unit detected correctly?
Should Z-level information have been applied?
Do some of the objects have errors?

Is the average object length realistic?

agrNE

e Check for network errors. See also data sources[14).

© 2022 RouteWare / Uffe Kousgaard

User Manual 19

1.20

1.21

¢ Reduce the setup as much as possible:

Call Open|séY(false,false,false,0) (removes one-way restrictions)
Set Turnmode = false, when creating TCalc instance

Set Hierarchy | 106] = false

Skip Limits| 9

Use SetShortest| o3

Set Alphalih = 0

Set NoDriveThroughlef) = false

Nog,rwNE

If this solved the problem, enable these again one by one, until it fails. Then you know where to look.
¢ Create maps in your GIS identifying the problem:

Look at basic map for no physical connection (missing bridge / ferry etc)
Create a thematic map of one-way directions and closed links

Create a thematic map of attribute field

Create a thematic map of hierarchy attributes etc.

Call TurnExportGIS| 661to view turn restrictions

Call FindNonConnected| 74 from RW Net Pro

Call SubNet]:0h from RW Net Pro

Noo,rwNE

If you have multiple points (Matrix or TSP function), it can be tricky to locate which point makes the
trouble. One method is to calculate with 2 points first. If that works OK, try with 3 points, then 4
points etc, until the problem pops up. Now the problem is usually somewhere near the last point
being added.

0/1-indexing
This list helps you when writing code, when to use 0 or 1 as base for indexing.

0 - indexed

All lists

Field number when reading from DAT / DBF
ZFromField / ZToField

TimeArray index

CostArray index

TurnArray index

1 - indexed

link id's

node id's

LimitFileIndex (1-9)
RoadnameFilelndex (1-99)

Changes from RW Net 2

This list is not being updated anymore, since RW Net 2 is now so long time ago.
New functionality

Full Unicode support

Improved .NET support (Compact Framework and Mono for instance)
Nodes can be "closed" in point-to-point routing

Links can be "closed" in point-to-point routing (No-Drive-Through bit)

© 2022 RouteWare / Uffe Kousgaard

20

RW Net 4

Complex turn restrictions

Automatic identification of left/right turns

Travelling salesman optimization with support for curb approach

Travelling salesman optimization with time windows

Output to array format instead of files on disk (known from RW NetServer 3)
Minimum spanning trees

Improved functionality

Better developer experience (more OOP)
Improved flexibility

Much faster spatial searches

Overall calculation speed

Changes in behaviour

Loop links are not allowed by default.

Networks with loop links do not work in route calculations (TCalc, TRouteCalc, TDrivingDirections).
Starting 1-1-2012.

Percentages in locations can now also be exact 0 or 1. No need to use 0.0001 or 0.9999

Side in locations are defined differently

The attribute field is differently defined for a few of the bits ("mode" is gone)

Alpha parameter is by default 1 (enabled)

Changes in setup

File format is different with an INI file introduced (can be replaced with an event if desired). Even
though some file names may be the same, the content may be changed

Road names are now stored in Unicode format, making import/export easier

Coordinate system is normally detected automatically during import

Coordinate system don't have to be specified when opening network, since it is stored in the INI file
Routes modes are now shortest, fastest or cheapest - it used to be shortest or fastest/cheapest
Distances, speeds etc. are in km (Sl-unit). Miles can only be used in a few output-to-file functions
Password for initialization is now also needed in the Delphi versions.

Functions removed

Isogrid

NWcreateCGF

ResultFile & ResultSave

RouteSave

All functions listed as obsolete in RW Net 2 documentation
COM version

Functions renamed

AirDistNode: DistanceBetweenNodes| 48

AirDistPos: DistanceBetweenPoints| 48}
AttributeCreate(2): ExecuteAttribute[33)

AttributeLoad: Open|58)

Assignment: TrafficAssi%mentm

CloseLink: OneWaySet|5

Coordinate2Location: NearestLocation[75)
Coordinate2LocationSimple: NearestLocationSimple[763
Coordinate2Node: NearestNode[76

CulDeSac: CulDeSac|4M & SubNetEx[+h & Bridges[:o®

© 2022 RouteWare / Uffe Kousgaard

User Manual 21

1.22

District: District[18)

Externidimport; ExecuteExternalidint[33) / ExecuteExternalidString[33
ExternIDfindID: Link2ExternallD[531
ExterniDfindindex: ExternallD2Link /5%
FindCloseNodes: FindNonConnected|7h
GetLinkDist: LinkLength[s51

GetOpenStatus: OneWayGet[58)

IsoLink2: IsoLinkDriveTimel[s}

IsoLink2Dyn: IsoLinkDriveTimeDyn|&H

IsoLink4: IsoLinkServiceAreal s

IsoPoly2: TVoronoi[:8 with mode = vmisoChrone
IsoPoly3: TVoronoil::8 with mode = vmSimple
IsoPoly4: TVoronoi[:8 with mode = vimServiceArea
LimitCreate: ExecuteLimit[38

LimitLoad: OpenLimit[5$)

LimitLoad_bitpattern: OpenLimit/5$)

Linkmax: Linkcount/[s3)

NetworkCenter: CenterNode[981/ Cluster2[:sh / Cluster3[::5
NetworkLength: Length[54

NodeCreate: ExportNodes| 56

NodeLinkCheck: FindNonConnected[74

Nodemax: Nodecount/5

NodeX, NodeY: Node2Coordinate[5M

NWcreate: TImport.execute[28), ExportNodes (5, ObjectCheck[58
NWload: Ogen@ﬁ

NW3Dnodes: ExternalNodeld2ZLevels[5H
Overpasses: FindOverPasses| 74

RoundAbout: AttributeGetBit[43Y(link, 11)

RouteList: TDrivingDirections| 1h

UnusedLinks: UnusedLinks| o0

Valency: Degree[4h

License Terms
Platforms

A license gives access to available versions as listed in the schema below. Within the first year
licensor has access to updates and new versions.

Standard Pro
NET Yes Yes
DLL for Maplinfo / MapBasic Yes Yes
Delphi XE5 - XE8, 10.0 - 11.1, 32/ 64 bif Yes Yes

Support

A license gives access to support as listed below for the first year:

Standard Pro / Standard site
E-mail support IASAP after 24 hours JASAP
[Telephone / Skype support Yes

E-mail support includes answering questions, which do not involve writing source code of >10 lines.
Only persons with a license can receive support.

© 2022 RouteWare / Uffe Kousgaard

22

RW Net 4

After first year, support and maintenance can be extended for one more year at a time.
Deployment / distribution

This table lists how deployment of applications is allowed for different versions of RW Net:

Standard [Pro
Deployment of desktop applications _|Only within own organization JAllowed
Deployment of server application See website for price See website for price
Deployment of TImport| 2 See website for price See website for price
unctionality

Itis a server application if:

¢ The application has an API, which makes the routing functionality accessible from other
applications or

¢ The routing functionality is available from other computers through a network (web service, REST,
cgi etc.)

General terms
Licensor is allowed to use RW Net for as long as he/she doesn't violate this license.

Licensor is not allowed to:

¢ Distribute applications outside it's own organization, which competes directly with RouteWare's
own applications: RouteFinder, RW NetServer and FleetEngine.

e Wrap up RW Net in component-like structures and distribute it.

If licensor holds a personal license, he/she can either:

1) Have only 1 named person using RW Net on as many computers as he/she like or

2) Install it on 1 physical computer (doesn't include terminal services, citrix and similar setups) and
let several persons use it from there (support is still only given to 1 person)

If licensor holds a site license, it allows an unlimited number of persons at licensors site to use RW
Net at the same time. Ask RouteWare for enterprise-wide licenses.

Licensors of RW Net are issued a personal password[1%) to activate the software. This password
must not be readable to end-users of deployed applications. It is the responsibility of licensor to
ensure that this is taken care of.

The usual legal stuff

All copyrights belong to RouteWare (Uffe Kousgaard).

Disassemble or reverse engineering of RW Net binaries are not allowed.

Licensor is not allowed to install RW Net on a network drive or shared drive except for backup
purposes.

Licensor is not allowed to sell or in any other way hand over the right to use the software to any
other party.

RouteWare is not responsible for any problems, direct or indirect, which RW Net may cause - no
matter what the reason may be.

Any problem / error will be corrected as fast as possible within normal business hours. If
RouteWare is not able to correct problems, which to a severe degree affect the functionality of the
software, a refund is made, which matches the degree to which the software doesn't function
properly. This refund is based on what the licensor has paid within the last 12 months and cannot
exceed this amount.

© 2022 RouteWare / Uffe Kousgaard

User Manual

Updated Jan 2014

23

© 2022 RouteWare / Uffe Kousgaard

Part |l

Main Classes

26 RW Net 4

2 Main Classes
2.1 Timport

These classes (TImport & TCustomimport) are used for importing the main geography part of a
network.

Using this class in applications that you deploy to other users, requires an additional runtime
license. See license terms| 2.

Timport

Add[28

AddFiles[2 (only available in RW Net Pro)
Execute[28)

ZfromField & ZtoField[31 *

TCustomimport (only available in RW Net Pro)
Execute[23)
OnlmportLink[3d) *

Shared properties / methods:

Allowl oops| 271 *
CoordinateUnit[2A *

CoordSys| 28 *

Directory| 28 *

EPSG| 287 *

Encryption[28 * (only available in RW Net Pro)
MaxNodesPerCell[281 *

PRJ[30)*

SkipSpatiallndex| 36} *

CreateReport[28)

ImportErrorList/ 2%
LinkCount[2

MaxDegree[29\
MBR 25

NodeCount/ 2%
StartTime[38
StopTime/ 3R
TotalLength[38)

* = Properties that may be set before calling execute[28). Default values are sufficient in most cases.

2.1.1 Add

Call this method to add a single file to the list of files for processing by Execute[28) method.

Adding a TAB file requires that the corresponding MAP and ID files are also present.
Adding a SHP file requires that the corresponding SHX file is also present.

Adding a MIF file requires no further files.

You can not mix different file types.

Extended TAB files from Maplinfo 15.2 (64-bit) and onwards ("NATIVEX") are supported.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 27

Syntax: Add(filename: string)

In RW Net Standard you can only add 1 file in total. If you add another one, the previous one gets
removed from the list.

2.1.2 AddFiles
This method can be used to add[26) multiple files at a time.
Syntax: AddFiles(files: TStringList:sh)
Only available in RW Net Pro.

2.1.3 AllowLoops

This property can be used to define if loop links are allowed in datasets. A loop link is one, where
the first and last vertex is the same.

If AllowLoops is false (default), loop links will be reported[28) during the import process.

If AllowLoops is true, the existence of any loop links will prevent the use of TRoute 6%,
TRouteCalc o8 and TDrivingDirections/ .

We recommend that loop links are split into 2 links in advance.

Databases without loop links: TomTom, HERE, OSM, ITN and Meridian 2.
Databases with loop links: NVDB and DAV.

Type: Boolean
2.1.4 Cancelled

You can check this read-only property after calling Execute[28\,
If true, the user stopped the process.

Type: boolean
2.1.5 Clear

This method will clear the list of files.
2.1.6 CoordinateUnit

Coordinate unit will automatically be detected for MIF and TAB files.
For SHP files it will happen automatically if a PRJ file exists.

For other situations, it should be set by the user or an error will be raised during import.
Default: cuUnknown

Type: TCoordinateUnit[%

© 2022 RouteWare / Uffe Kousgaard

28

RW Net 4

2.1.7

2.1.8

2.1.9

2.1.10

2.1.11

2.1.12

CoordSys

This string property is a Maplnfo coordinate clause.

If you import from a MIF or TAB file, it property will automatically be set during execution.

You can set it manually, if you plan to export to MIF or TAB using TGISwrite[:22 or one of the other
functions writing to GIS files.

Otherwise it will be set to a default value (Non-Earth coordsys) that matches CoordinateUnit[27 and
the coordinates in the file.

Type: String

CreateReport

Call this method after calling execute to generate a report on the import process. This is similar to
the report from RW Net 2.

Filename is always network _report.txt and it is stored in the same folder as the other bin files.
Syntax: CreateReport

Directory

This property points to where the output files are stored.

Default: Current directory.

Type: String

EncryptionKey

You can set this property if the imported files should be encrypted to prevent other users from using
the files. Encrypting makes it harder, but can't fully prevent the very determined and skilled user
from getting to your data.

Default value is 0 (no encryption). You can only set it in RW Net Pro.

Type: Int64

EPSG

The EPSG code should be set before importing, if you plan to export to GML files later on.
Default value is 4326 (Lat/Long, WGS84).

Type: Integer

Execute

Call this method when you have defined all input parameters. This is what does the main job.

Syntax: Execute

© 2022 RouteWare / Uffe Kousgaard

Main Classes 29

2.1.13

2.1.14

2.1.15

2.1.16

2.1.17

2.1.18

2.1.19

FailOnDifferentCoordSys

This property is used for controlling import of multiple TAB or MIF files.
If true (default), it will stop when different CoordSys' are encountered.
Type: Boolean

ImportErrorList

This read-only property keeps a list of problematic links in the input data source, found during
import process. Content of the list is also written to the report[28\.

Type: TImportErrorList[8)

LinkCount

This read-only property returns the total number of links after calling execute[28),

Type: Integer

MaxDegree

This read-only property returns the maximum degree of the network after calling execute[28).
Type: Integer

MaxNodesPerCell

This property can be used to define how detailed the spatial index should be. Set the value before
importing.

A higher value decreases the size of of the file and memory foot print, but reduces speed of spatial
searches.

Default value is 50. Minimum value is 25.

Type: Integer

MBR

This read-only property reports the minimum bounding rectangle (MBR) after import
Type: TFloatRect/sh

NodeCount

This read-only property returns the total number of nodes generated after calling execute[28),

Type: Integer

© 2022 RouteWare / Uffe Kousgaard

30

RW Net 4

2.1.20

2.1.21

2.1.22

2.1.23

2.1.24

2.1.25

OnlimportLink
In class TCustomimport assign this event to read custom data:

Parameters:

1) Link is automatically increased by one every time.

2) Vertices: This is a list of vertices (coordinates).

3) VertexCount: Indicates the number of vertices on the list. The list may be longer than actual
number of elements.

4) Zfrom, Zto: Z-levels[18} for the link.

5) LastLink: Set this to true, when you have reached the last link to be read.

All links will be traversed twice. Depending upon your source of data, it may be faster to extract to a
MIF file first.

Syntax: OnImportLink(link: integer; var vertices: TFloatPointArray [s7; var vertexcount:
TVertexCount| :62; var Zfrom, Zto: integer; var LastLink: boolean)

PRJ

This string gets updated during the import process, if a PRJ file exists along with a SHP file and no
coordinate unit has been specified.

Type: String
SkipSpatiallndex

This property allows you to skip creation of the spatial index during import to save time and disk
space.

Spatial index is needed by TSpatialSearch[73).

The spatial index can not be created later on, unless you re-import the data.
Default: false

Type: Boolean

Starttime

This read-only property reports when importing started.
Type: TDatetime

Stoptime

This read-only property reports when importing stopped.
Type: TDatetime

TotalLength

This read-only property returns the total length for all links after calling execute[28).

Type: Double

© 2022 RouteWare / Uffe Kousgaard

Main Classes 31

2.1.26 ZFromField & ZToField
These 2 properties are used for describing Z-levell161in input data.

The 2 properties refer to the field ID in the same way as it is being done in class
TImportAtiributes[39 First field has index 0.

For TAB files, the execute command will automatically look for .DAT files.
For MIF files, the execute command will automatically look for .MID files.
For SHP files, the execute command will automatically look for .DBF files.
Set both values >=0 to apply.

Default: -1

Type: Integer
2.2 TimportAttributes

This class is for importing attribute information for the links in the network.

File-based | Event-based

Attributes ExecuteAttribute! 33 ExecuteAttributeEvent| 33
External ID's (integers) ExecuteExternalidint! 331 |ExecuteExternalidintEvent! 3
External ID's (strings) ExecuteExternalidString |ExecuteExternalidStringEvent

3 [34)
Limits ExecuteLimit| 38 ExecuteLimitEvent| 34)
Road names IExecuteRoa_dnamelaﬁ ExecuteRoadnameEvent| 35
Before calling any of the file-based methods above, call function Add[3% to add a list of files to
import from. Supported file formats include DBF, DAT, MIF and CSV.

If you rather want to import using events, use one of these procedures mentioned in the column with
event-based methods.

221 Add
Call this method to add a single file to the list of files for processing by one of the execute methods.
You can add DBF, DAT, MID and CSV files, but not mix different file types.
If you use CSV files, remember to set CodePageCSV[32. Codepage for other file types gets auto-
detected: DAT files from their TAB counterpart and MID files from their MIF counterpart. DBF gets
detected from the internal header.

Syntax: Add(filename: string)

In RW Net Standard you can only add 1 file in total. If you add another one, the previous one gets
removed from the list.

2.2.2 AddFiles
This method can be used to add[3h multiple files at a time.

Syntax: AddFiles(files: TStringList[sh)

© 2022 RouteWare / Uffe Kousgaard

32

RW Net 4

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

Only available in RW Net Pro.

Cancelled

You can check this read-only property after calling one of the execute functions, except for the
event based ones.

If true, the user stopped the process.

Type: boolean

Clear

This method will clear the list of files.

CodepageCSV

When reading from CSV files, set this property to the codepage used.

Default: Codepage of the local system.

Type: TCodePage|:sh

CodepageDBF

When reading from DBF/DAT files, set this property to the codepage used. Normally leaving it to O
is sufficient, but DBF files from OpenStreetMap uses UTF-8, which isn't supported natively by DBF

format. In that case set it to 65001.

If setto O, it uses the codepage byte inside the file header. If that byte is O too, it uses the codepage
of the local system.

Default: 0.

Type: TCodePage|h

Directory

This property points to where the output files are stored.

Default: Current directory.

Type: String

EncryptionKey

You can set this property if the imported files should be encrypted to prevent other users from using
the files. Encrypting makes it harder, but can't fully prevent the very determined and skilled user
from getting to your data.

Default value is 0 (no encryption).

Type: Int64

Only available in RW Net Pro.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 33

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

ExecuteAttribute
Call this procedure to import attribute information from one or more files.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteAttribute(fieldindex: integer; fieldname: string; fk: TFileKind[:sh)
ExecuteAttributeEvent

Assign event OnReadAttribute for importing attributes. When the last record has been reached, set
lastrecord = true.

TAttributeReadEvent = procedure(Sender: TObject; link: integer; var attribute: word; var lastrecord:
boolean);

Syntax: ExecuteAttributeEvent
ExecuteExternallDInt

Call this procedure to import external ID information from one or more files, when the field is an
integer field.

If the value read doesn't fit into an integer [, specify useint64 = true and an int64/:sh will be used
instead.

Int64 formatted files can only be opened with RW Net 4.18 or newer.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteExternalidint(fieldindex: integer; fieldname: string; fk: TFileKind[%, useint64:
boolean)

ExecuteExternallDIntEvent

Assign event OnReadExternallDInt for importing external ID's that are integer based. When the last
record has been reached, set lastrecord = true.

Specify useint64 = true and int64/1sh will be used for storage instead of integers[:sh, allowing much
bigger numbers.

TExternallDReadIntEvent = procedure(Sender: TObject; link: integer; var externallD: int64; var
lastrecord: boolean)

Syntax: ExecuteExternallDIntEvent(useint64: boolean)
ExecuteExternallDString

Call this procedure to import external ID information from one or more files, when the field is a string
field.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

© 2022 RouteWare / Uffe Kousgaard

34

RW Net 4

2.2.14

2.2.15

2.2.16

2.2.17

Syntax: ExecuteExternalidString(fieldindex: integer; fieldname: string; fk: TFileKind[:s%)
ExecuteExternalIDStringEvent

Assign event OnReadExternallDString for importing external ID's that doesn't fit in an integer. When
the last record has been reached, set lastrecord = true.

TExternallDReadStringEvent = procedure(Sender: TObject; link: integer; var exteralnID: string; var
lastrecord: boolean)

Specify the maximum width of the strings to be read.

Syntax: ExecuteExternalidStringEvent(width: integer)
ExecuteLimit

Call this procedure to import limit information from one or more files.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

For DBF format only:

Constant and factor are optional parameters with default values 0 and 1. If applied, the limit is
calculated like this:

(value - constant) * factor

This allows you to directly read from a field which doesn't fit the 0..255 range, but recalculate on the
fly.

If the calculated value is outside the range, you get an exception.

Syntax: ExecuteLimit(fieldindex: integer; fieldname: string; fk: TFileKind[1sh; constant, factor: double)
See also LimitFilelndex[35)

ExecuteLimitEvent

Assign event OnReadLimit for importing limits. When the last record has been reached, set
lastrecord = true.

TLimitReadEvent = procedure(Sender: TObject; link: integer; var Limit: byte; var lastrecord: boolean)
Syntax: ExecuteLimitEvent

ExecuteRoadname

Call this procedure to import road names from one or more files.

Specify fieldindex (0-based) or fieldname. If fieldname is specified, it takes precedence.
If reading from MID file, it will automatically lookup the codepage from the MIF file.

Syntax: ExecuteRoadname(fieldindex: integer; fieldname: string; fk: TFileKind|[sh)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 35

2.2.18

2.2.19

2.2.20

2.3

ExecuteRoadnameEvent

Assign event OnReadRoadname for importing road names. When the last record has been reached,
set lastrecord = true.

TRoadNameReadEvent = procedure(Sender: TObject; link: integer; var name: string; var lastrecord:
boolean)

All links will be traversed twice. Depending upon your source of data, it may be faster to extract to a
CSV file first.

Syntax: ExecuteRoadnameEvent
LimitFileIndex

When calling ExecuteLimit[34) or ExecuteLimitEvent| 34 this property is used in the naming of the
output file.

Allowed interval is 1 to 9.
Default: 1

Type: integer
RoadNameFilelndex

When calling ExecuteRoadname| 34 or ExecuteRoadnameEvent[3s1 this property is used in the
naming of the output file.

Allowed interval is 1 to 99.
Default: 1

Type: integer
TimportSQL

This class can be used to import directly from a GIS enabled database.
MS SQL Server, Oracle and PostgreSQL ("PostGIS") all offers storage of gis data, directly inside
the database.

We have implemented it for all three and for:

o .NET

e 32/64 bit DLL

e Delphi XE7 - XE8 - 10 - 10.1 - 10.2 - 10.3 - 10.4 - 11.0.

You can reuse the majority of the shared properties from TImport[26) with this class
(CreateReport[28}, NodeCount[2%) etc.).

This class is available with Pro only.

For .NET you need:

o GeoPackage: Microsoft.Data. Sqlite
e MS SQL: Microsoft.Data.SqlClient

© 2022 RouteWare / Uffe Kousgaard

36 RW Net 4
¢ Oracle: Oracle.ManagedDataAccess.dll or Oracle.ManagedDataAccess.Core
e PostgreSQL: Npgsql.dll and npgsgl.nettopologysuite
For the MapBasic DLL version it is all compiled into the DLL.
For the VCL version you need to have UniDAC Pro installed too (version 6.4.15+ is required).
Performance
Example of importing the same dataset (Brazil, 6.5 million links), from different data sources:
NET UniDAC (VCL)
TAB file local 305 163 sec
GeoPackage local 202 201 sec
IMS SOL Server 2008 R2 Express remote 275 194 sec
PostgreSOL 9.4 remote 391 329 sec
Oracle 11.2 XE remote 1536 1422 sec
Full setup: Geography, Z-levels, attribute, road name, limit and external ID.
2.3.1 ExecuteGeoPackage
A GeoPackage is a geographically enabled SQLite database file.
You can import from it, using this method:
Syntax: ExecuteGeoPackage(filename, TableName: string; geography: boolean; attribute,
roadname, externalid, limit, ZFrom, ZTo: string);
2.3.2 ExecuteMSSQL
This is the main method and is a single call to do all the processing.
The first 5 parameters always need to be set.
For the rest at least one need to be set. This way you can create just the attribute.bin file or similar if
you have the rest in advance.
If geography is true, the field with the geography is automatically detected. For the remaining the
fieldname need to be set.
Object types in the table can be LineString, while MultiLineString are skipped.
Do not specify the schema, it will automatically look up the schema on its own.
It will also automatically look for a Maplnfo mapcatalog with additional meta information.
Example set of parameters for a table "roads" that has been uploaded to a local MS SQL Server
Express database.
[Parameter \Value
Server '127.0.0.1\SQLEXPRESS" or
'127.0.0.1" or
'127.0.0.1:12345"
IDatabase 'GIS1"

© 2022 RouteWare / Uffe Kousgaard

Main Classes

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

37
[Username "GIS userl"
[Password 'secret_code”
Tablename "roads"
IGeography Jtrue
Attribute "attribute4"
Roadnhame 'streetname”
Externalid "'ID"
Limit
ZFrom "ZFromLevel"
ZTo 'ZToLevel"

Syntax: ExecuteMSSQL(Server, Database, Username, Password, TableName: string; geography:
boolean; attribute, roadname, externalid, limit, ZFrom, ZTo: string);

ExecuteMSSQL?2

This is the same method as ExecuteMSSQL [36Y, except it replaces these parameters:
server, database, username, password,

with a connection string.

You are responsible for formatting it according to the database specifications.
ExecuteORACLE

This method is similar to the one for MSSQL[36,

ExecuteORACLE?2

This is the same method as ExecuteORACLE[37, except it replaces these parameters:
server, database, username, password,

with a connection string.

You are responsible for formatting it according to the database specifications.
ExecutePOSTGIS

This method is similar to the one for MSSQL[36),

ExecutePOSTGIS2

This is the same method as ExecutePOSTGIS[37), except it replaces these parameters:
server, database, username, password,

with a connection string.

You are responsible for formatting it according to the database specifications.

© 2022 RouteWare / Uffe Kousgaard

38

RW Net 4

2.3.8

2.3.9

2.3.10

2.4

LimitFilelndex

When calling ExecuteMSSQL [361 this property is used in the naming of the output file.
Allowed interval is 1 to 9.

Default: 1

Type: integer

RoadNameFilelndex

When calling ExecuteMSSQL 38 this property is used in the naming of the output file.
Allowed interval is 1 to 99.

Default: 1

Type: integer

WhereClause

This string allows you to restrict the import according to any SQL where-clause.
This is passed directly on to the engine.

Example "roadclass < 5"
Default: empty

Type: string
TNetwork

This is the main class that holds all the information about the street network, while the other classes
(TSpatialSearch[73), TRouteCalc/[:oh, TCalc[78)) link to this, when doing calculations. Whatever you
define here, is shared by all the other classes linking to it.

Besides holding the core network (geometry, topology, spatial index), it also allows you to work with
other types of information: Attributes, time / speed, cost, road names, turn restrictions, limits etc.

This is a list of available methods / grouped by area: (*) = Pro only.
Basic opening & closing of the network
Directory[48)

EncryptionKey [4%
LinkLimit[53

Open|[5&
Close[43)

CloseExternallD|[461
Geometry & topology
These are generally fairly simple lookup functions returning information requiring little processing.

CoordinateUnit[48}

© 2022 RouteWare / Uffe Kousgaard

Main Classes 39

CoordinateWindow/ 48
CulDeSac|[4h

Degree/[4N
ExtractSection[53)
GetGISSection[s3)
Length[5
Link2FromNode[sH
Link2ToNode| 58
LinkCount[53)
LinkLength[55
Location2Coordinate[58}
Location2CoordinateList/ 561
LoopLink[561
LoopLinks[5

MaxDegree[5A
MBR 55

Node2Coordinate[57
Node2Link[72) (¥)
NodeCount[5h
SwaplList[63

Attributes
See this introductory chapter on attributes[53

AttributeGet[42\
AttributeGetBit[43
AttributeSave[43
AttributeSet[43
AttributeSetBit[43
AttributeSetBits| 431
AttributeSetSkiplnSearchBit[43)
Hierarchy [s4)
OneWayGet[58)
OneWaySet[58
OpenAttributes[59)
NoDriveThroughlnit/57
NoDriveThroughSet[5%
RoadClass[6H

SwapOneWay /|64

Time
Time is defined as minutes and is the criteria for routing in fastest/93 mode

CreateArrayTime[4A
CalculateTime[48
ReadTime[6H
GetTime[54

SetTime[63

Speed

Internally speed is always stored as time for each link, so if you change one, you also change the
other.

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

ReadSpeed|[63
GetSpeed|s
SetSpeed| 63

Cost
Use cost, when you want a more flexible routing criteria than just time or distance.

AllowNegativeCost[42)
CreateArrayCost| 4R
CalculateCost[4%
ReadCost| 6
GetCost/ 53
SetCost[62)

Turn restrictions
See this introductory chapter on turn restrictions/ 9™.

CreateArrayTurn 4%

TurnAutoProcess| 64

TurnimportBin[6A
TurnimportTxt| 6%

TurnRestriction[68}
TurnRestrictionComplex/ed
TurnStandard| 68
TurnMandatory [68)
TurnReset| 681

TurnExportBin| 66)

TurnExportGIS[66)
TurnExportTxt| 68

Road Names
These are mostly used when creating driving directions.

OpenRoadName| 5%
Link2RoadNamelD[53)
Link2RoadName| 581
RoadName2RoadNamelD[6}
RoadNamelD2RoadName[6%
RoadNameMaxWidth[6D)
CloseRoadNameFile[46

ValidCodePage[6%

External ID
See this introductory chapter on external ID[8%,

ExternallD2Link[59
Link2ExternallD[5%

Limits

© 2022 RouteWare / Uffe Kousgaard

Main Classes

See this introductory chapter on limits| &".

OpenLimit/ 58
GetLimit/ 53
SetLimit[62)
SaveLimit[eD

TRoute methods
Methods operating on a TRoute|:sh instance (output from route calculation).
GetGlSSectionRoute[53)

RouteLength 6h
NoDriveThroughCheck[57

Check functions

These are functions for verifying input. They are used internally by most of
the other methods, so you generally don't need to call them on your own.

CheckCoordinate[48)
CheckExternOpen[+8
CheckLink[44
CheckLocation[4H
CheckLocationList[43
CheckNode[4
CheckNodeList[45
CheckOpen[4%
CheckTurnindex 43

Export

Methods for exporting data to a GIS file, so you can view the actual data.

ExportLinks[4%
ExportLinksFullSplit[49)
ExportLocationList| 56
ExportNodeList/ 58
ExportNodes[53
ExportPolyGeneration[58)
ExportTrafficList] 781 (¥)
TurnExportGIS[66)

Advanced methods

These are more complex methods doing various sorts of calculations / analysis.

Direction[4h
DistanceBetweenNodes| 48
DistanceBetweenPoints[48
DistanceToLink/ 48
DistanceToLinkSimple[43
DistanceToNode[4&)
DownStream[78} (*)
ExternalNodeld2ZLevels[5H

41

© 2022 RouteWare / Uffe Kousgaard

42 RW Net 4

FindDuplicateLinks[52)
Join[7h (*)
Matrix/ 561
MatrixDyn|56)
MatrixDyn2|[56
ObjectCheck] 58
ParallelLinks[53)
Sele%@

Split| 6

Trace[72) (¥)
UpdateAlphas[6$)
UpStream| 73 (*)

GIS output

These 5 properties all define various settings, used when generating GIS output. See TGISwrite[12h
class.
They are automatically populated when the network is opened.

Codepage[48)
CompactMIF[48)

CoordSys| 461
EPSG 46

PRJ[6&)

When calling GlSoutputlnit[54 it also inherits these values.

GlSarray 581 is for storing output, when you have chosen array as output format.
Random places

When you just need some random input data for testing.

RandomPoint[63)

RandomNode[631
RandomLocation[63)

2.4.1 AllowNegativeCost

If you set this to true, it allows you to work with negative costs under certain circumstances. See
SetCost[62),

Default value: False
Property: boolean;
2.4.2 AttributeGet

This function returns the attribute[53 for the link.

Syntax: AttributeGet(link: integer): word

© 2022 RouteWare / Uffe Kousgaard

Main Classes 43

2.4.3 AttributeGetBit

This function returns the attribute[57 value for a single bit of the link.

Syntax: AttributeGetBit(link: integer; bit: byte): boolean

Example: AttributeGetBit(145,11) returns true if link 145 has been marked as a round-about link (bit
11).

2.4.4 AttributeSave

If you have made changes to the attributes, you can save the whole content as a new attribute.bin
file. 1t will use the folder as specified by Directory[48) and overwrite an existing file.

Syntax: AttributeSave
2.45 AttributeSet

This method will change the whole attribute[57 of a link.

Syntax: AttributeSet(link: integer; value: word)
2.4.6 AttributeSetBit
This method will change an attribute[53 bit of a single link. Bit is a value from 0 to 15.
Syntax: AttributeSetBit(link: integer; bit: byte; value: boolean)
2.4.7 AttributeSetBits
This method will change an attribute[57 bit for all links, according to BA. Bit is a value from O to 15.

BA should have one more elements than LinkCount[s5), since Links are 1-based and TBitArray [48 is
0-based.

Syntax: AttributeSetBits(bit: byte; BA: TBitArray /1)
2.4.8 AttributeSetSkipInSearchBit

This method will set the SkipIinSearch bit for all closed links (both oneway bits set). For open links,
the bit is cleared.

Syntax: AttributeSetSkipIinSearchBit

2.49 CalculateCost
This will update a Cost array index as a linear combination of length and time:
Cost(*,costindex) = weightlength * Length(*) + weighttime * Time(*, timeindex)

Syntax: CalculateCost(costindex: integer; weightlength, weighttime: TCost; timeindex: integer;
maxspeed: TCost)

Call CreateArrayCost[4M in advance to allocate the index.

© 2022 RouteWare / Uffe Kousgaard

a4

RW Net 4

2.4.10

24.11

2.4.12

2.4.13

2.4.14

Timeindex points to one of the arrays defined through CreateArrayTime[4?. If weighttime = 0, value
of timeindex is ignored.

If both weights are <> 0, we recommend setting weighttime = 1. This ensures the values can be
interpreted as time easily and be used together with turn delays if needed.

If maxspeed is defined, then time is adjusted according to that.

CalculateTime

This will calculate time on all links, by looking up the speed in the RCS array, based upon the road
class attribute[5™

Time(*,index) = Length(*) / RCS(attribute(*)) * 60

Call CreateArrayTime[4M in advance to allocate the index.

See also TCalc.MaxSpeed| &3\,

Syntax: CalculateTime(index: integer; RCS: TRoadClassSpeed|:sh)

CheckCoordinate

This will check if a coordinate is valid.

If using degrees / radians / grads there are natural limits for valid values (-180 to 180, -90 to 90 etc).
For all coordinate units the coordinatewindow(481 is used for checking that P is within a certain

bounding box of the street network.
By setting CoordinateWindow < 0, this part of check is disabled.

Syntax: CheckCoordinate(P: TFloatPoint[:sh)

CheckExternalOpen

This method checks if the external ID[8% has been opened through Open|s8).
Syntax: CheckExternalOpen

CheckLink

This will check if a link number is valid, i.e between 1 and LinkCount[58). At the same time
LinkLength[5% has be <> 0.

Syntax: CheckLink(link: Integer)
CheckLocation

This will check if a location number is valid, i.e link is between 1 and LinkCount[531 and percent is
between 0 and 1.

Syntax: CheckLocation(loc: TLocation|s%)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 45

2.4.15

2.4.16

2.4.17

2.4.18

2.4.19

2.4.20

2.4.21

CheckLocationList
Checks/ 44 all elements in LL:

Syntax: CheckLocationList(LL: TLocationList[:4)

CheckNode

This will check if a node number is valid, i.e between 1 and NodeCount/57.
Syntax: CheckNode(node: Integer)

CheckNodelList

Checks[43 all elements in NL:

Syntax: CheckNodeList(NL: TintegerList[)

CheckOpen

This method checks if the network has been opened through Open|[58).
Syntax: CheckOpen

CheckTurnindex

This checks if index is valid for referencing sets of Turn restrictions. See CreateArrayTurn|47\.

Syntax: CheckTurnindex(index: integer)

Clone

This method clones an existing network in memory. This is faster than opening the same network
twice, but for different purposes.

Example:
NW:= TNetwork.create;
NW.open(....);

NW2:= TNetwork.create;
NW.clone(NW2);

It clones all elements, including limits, roadnames etc.
Syntax: Clone(NW: TNetwork);
Close

This method closes the network and releases all memory related to it. This includes arrays setup
using CreateArray* functions, all roadname files etc.

Syntax: Close

© 2022 RouteWare / Uffe Kousgaard

46

RW Net 4

2.4.22

2.4.23

2.4.24

2.4.25

2.4.26

2.4.27

2.4.28

CloseExternallD

This method closes the memory related to the external ID.

This can be used after loading turn restrictions and you don't need it anymore.
Saves a lot of RAM on large networks.

Syntax: CloseExternallD

CloseRoadNameFile

This method closes a single roadname file and releases the memory related to it.
Syntax: CloseRoadNameFile(FileNumber: integer)

Codepage

For defining the desired codepage when calling GlSoutputlnit/ 54

When outputtting to TAB format, the codepage is automatically translated to a corresponding
characterset such as WindowsLatin1l etc.

Property Codepage: TCodePage|:s%)
CompactMIF

Property CompactMIF[18: boolean
CoordinateUnit

Read-only property. Is set when calling Open[58).
Type: TCoordinateUnit[:sH
CoordinateWindow

This property controls checking of coordinates(44 when entered into functions that accept
coordinates.

It is used in checking if coordinates are within the Minimum Bounding Rectangle[57 + X % of the
street network. This will prevent situations where you by mistake swap x and y coordinate or use
lat/long coordinates when the street network was in a projected coordinate system or vice versa.

Use a negative number to skip checking.

An example: If the coordinate should be between 0 and 50 and CoordinateWindow = 20 (default),
then only coordinates between -10 and 60 will be accepted.

Type: double
CoordSys
This property is set when calling Open|[58).

Property CoordSys: string

© 2022 RouteWare / Uffe Kousgaard

Main Classes 47

2.4.29

2.4.30

2431

2.4.32

2.4.33

2.4.34

CreateArrayCost

Call this method to allocate room for n cost arrays. Cost arrays can be used, when you want to a
route that isn't shortest or fastest, but rather some other expression.

Syntax: CreateArrayCost(n: integer)
CreateArrayTime

Call this method to allocate room for n time arrays. Time arrays are primarily used for fastest path
routing. Multiple arrays can be setup for different uses (vehicle types, time of day etc).

Default value is 60 km/h.
Syntax: CreateArrayTime(n: integer)
CreateArrayTurn

Call this method to allocate room for n turn arrays. Each array is a list of turn restrictions / turn
delays.

When calling Openl 58, this is automatically initialized for 1 array, so normally it isn't needed to call
at all.

Syntax: CreateArrayTurn(n: integer)

CulDeSac

This read-only prope’ryﬁreturns true if a link is part of a Cul-De-Sac / dead end link. See also
NonCulDeSacNodes| 581,

A link is defined as a cul-de-sac, if you can't get back without making a U-turn.
If you can get back without making a U-turn, but only using the same link, it is a bridge 1o

Syntax: CulDeSac[Index: Integer]: boolean

Degree

This method returns the degree of a node. See network terminology [4™ for details.

To iterate through the links connected to a node, use function Node2Link[72,
Syntax: Degree(node: integer): integer
Direction

Returns the turning angle (0-359) at node2 when moving from link1 to link2 via node2. This is based
on the exact coordinates of the polylines and the node.

Link1 and link2 must both be connected to node2. Specifying hode2 may seem superfluous, but is
required since link1 and link2 could be parallel links.

Straight on is 0, to the left is 90, backward is 180 and to the right is 270.

© 2022 RouteWare / Uffe Kousgaard

48 RW Net 4

Syntax: Direction(link1,node,link2: integer): integer
2.4.35 Directory

This property defines the location of all binary files used by RW Net. Default directory is the current
path.

Type: string
2.4.36 DistanceBetweenNodes

Calculates the as-the-crow-flies distance between two nodes.

Syntax: DistanceBetweenNodes(nodel,node2: integer): double
2.4.37 DistanceBetweenPoints

Calculates the as-the-crow-flies distance between P1 and P2.

Syntax: DistanceBetweenPoints(P1,P2: TFloatPoint/:sh): double
2.4.38 DistanceToLink

This method calculates the distance from P to link.

It returns this information:

Percentage along the link (0 .. 1)
Side of the link (-1: Left or 1. Right)
Distance

Coordinates of location on link

Syntax: DistanceToLink(P: TFloatPoint[:s7; link: integer; out percent: double; out side: integer; out
distance: double; out Pnew: TFloatPoint/:s™)

See also DistanceToLinkSimple[48) and NearestLocation[73\.

2.4.39 DistanceToLinkSimple
This method calculates the distance from P to link.
Syntax: DistanceToLinkSimple(P: TEloatPoint[:s%; link: integer): double

See also DistanceToLink[48) and NearestLocationSimple[78\.

2.4.40 DistanceToNode
This method calculates the distance from P to a node.

Syntax: DistanceToNode(P: TFloatPoint[:sh; node: integer): double

© 2022 RouteWare / Uffe Kousgaard

Main Classes 49

2.4.41

2.4.42

2.4.43

2.4.44

2.4.45

DuplicateLink
This property can be used to check which link is a links duplicate.

Call EindDuplicateLinks[52 first.

If the link hasn't a duplicate, it returns O.

Property DuplicateLink[Index: Integer]: integer

EncryptionKey

Set this property before calling Open[s8), if your data are encrypted.
Type: int64

EPSG

This property is set when calling Open|[s8\.

property EPSG: integer

ExportLinks

This method will export the currently open network, including external ID, limit and roadname
information where available.

LL can be used if you want to split some of the links. Typically setup LL using FindOverPasses| 74
or SplitAndSnap| 78.

If you prepare LL on your own, remember to call these 2 methods after filling in the list:
RemoveDuplicates and RemoveStartEndPos.

BA can be used to specify a selection - a subset of the links.
JoinNodes can be used to state groups of nodes, which should be merged into a single point during
output.

The coordinates of the new point is the simple average of the points in the groups.
See output from JoinNodes| 751 method.

LL, BA and JoinNodes can all be nil.

Syntax: ExportLinks(filename: string; GF: TGISformat(:sh; LL: TLocationList[:+h; BA: TBitArray [14;
JoinNodes: TintegerLists[1+");

ExportLinksFullSplit

This method will export the currently open network, including external ID, limit and roadname
information where available.

All links are split into short sections, between vertices. See map here: network terminology[43 (blue
dots). The method is good for preparing OpenStreetMap data for use in RW Net. Use method
Join[78 with topology=2 on the exported dataset and possibly also FindOverPasses|74 function.

BA can be used to specify a selection - a subset of the links. BA can be nil.

Syntax: ExportLinksFullSplit(filename: string; GF: TGISformat/ 5% BA: TBitArray[145)

© 2022 RouteWare / Uffe Kousgaard

50

RW Net 4

2.4.46

2.4.47

2.4.48

2.4.49

ExportLocationList

This method will export LL, so it can be viewed externally. As a minimum the coordinate part of the
items need to be filled in.
Use Location2CoordinateList/ 561 for this, if only the location is filled in.

Syntax: ExportLocationList(filename: string; GF: TGISformat/:sh; LL: TLocationList/:4)
ExportNodeList
This method will export NL, so it can be viewed externally.

Syntax: ExportNodeList(filename: string; GF: TGISformat/:sh; NL: TintegerList[)

ExportNodes

This method will export the nodes of the currently open network. Nodes are styled according to the
degree (MIF, TAB format only):

1: Big red dot

2: Little black dot

3: Medium blue dot

4+: Medium magenta dot.

Syntax: ExportNodes(filename: string; GF: TGISformat]sh)

ExportPolyGeneration

This function is mostly for debugging purposes. It allows you to export the content of PG to 2 GIS

files, so both facilities (startpoints) and the main data (CoordCostSiteList) are shown. Files called

StartPoints and CoordCostSite are generated as specified in the same folder as the main network
files.

Syntax: ExportPolyGeneration(filename: string; GF: TGISformat[:sh; PG: TPolyGeneration| %)

Example: ExportPolyGeneration("test’, gfSHP, PG) will generate files test_startpoints.shp and
test_coordcostsite.shp.

Example with 3 start points and thematic map of nearest facility:

© 2022 RouteWare / Uffe Kousgaard

Main Classes 51

2.4.50

2.4.51

egend £
CoordCostSite by Site
W - (2)
@ o (97
W1 o193
B 2 vo3n

ExternallD2Link

This method translates an external ID[83 into the internal ID.
Syntax: ExternallD2Link(id: string): integer
ExternalNodeld2ZLevels

In most datasets Z-levels are used to describe when streets intersect at different levels such as with
bridges.

However, some use external node numbers instead to indicate that a shared coordinate belongs at
different levels.

In this example we have 6 links with these fromnode and tonode values:
1: 100 - 500
2: 200 - 500
3: 400 - 601
4: 500 - 600

© 2022 RouteWare / Uffe Kousgaard

52

RW Net 4

2.4.52

2.4.53

5: 600 - 700
6: 601 - 800

As can be seen on the simplified map below, hode 600 and 601 is really the same coordinate,
but since the external node is different, they have different Z-levels.

200 400
| |
| |

100 ----- 500 ----- 600 / 601 ----- 700

|
I
|

800

This method helps you translating from external node numbers to Z-levels for the links.

After you have imported and opened a network, create a text file like this:
100,500
200,500
400,601
500,600
600,700
601,800

After calling the function you will get an output file with pairwise Z-levels like this:

0,0

0,0

0,1

0,2

2,0

1,0

Once applied to your dataset, you can import it again, this time declaring Z[31 during import.
Syntax: ExternalNodeld2ZLevels(InputFile, OutputFile: string; GF: TGISFormat/:sh);
ExtractSection

This method can be used to extract a part of a whole link. Start calling GetGISSection[53
Start and stop should be from 0 to 1 and if stop<start the order of the coordinates is swapped.

Example: ExtractSection(list,1,0) will return the whole list in reverse order.

Syntax: ExtractSection(list: TFloatPointArrayEx[:sh; start,stop: TPercent[s0): TFloatPointArrayEx[:sh

FindDuplicateLinks

This method will find occurrences of 2 identical links, which are both marked as one-way streets, but
in opposite directions.

They need to be digitized in the same direction.

You can use it to assign different cost to each direction of a link.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 53

2.4.54

2.4.55

2.4.56

2.4.57

2.4.58

2.4.59

It is automatically called as part of Open[581 and OpenAttributes|59), but you can manually do it after
updating one-way status.

The function returns the number of links found.
Use property DuplicateLink[49) to check the outpu.
Example: if DuplicateLink[4] = 7, then the other way around is also true: DuplicateLink[7] = 4.

TRouteCalc[:0h and TDrivingDirections[8 uses this feature internally to check both directions of a
street, before returning a result.

Syntax: FindDuplicateLinks: integer;
GeoJSON

When using gfGeoJSONI[1sh as output format in functions like ExportNodes[53 etc, this read-only
property holds the output, if filename is empty.

Property GeoJSON: string

GetCost

This method returns cost for a single link and array index.
Syntax: GetCost(index,link: integer): TCost/ 58

See also CreateArrayCost[4%, CalculateCost[43) and SetCost/[62)

GetGISSection
This method returns a list of coordinates for a link in the network.

Syntax: GetGlSSection(link: integer): TFloatPointArrayEx[sh

GetGISSectionRoute
This method returns a list of coordinates for a whole route.

Syntax: GetGlSSectionRoute(route: TRoute[sh): TFloatPointArrayEx[:sh

GetLimit

Returns limit (0-255) for the specified limit and link.
You need to have called OpenLimit[59) in advance to setup the memory.

Syntax: GetLimit(LimitID,link: integer): byte

GetLimitBit

Returns limit value (true/false) for the specified limit, link and bit (0-7).
You need to have called OpenLimit/59) in advance to setup the memory.

It is aimed at bitpatterns.

Syntax: GetLimitBit(LimitID,link: integer; bit: byte): boolean;

© 2022 RouteWare / Uffe Kousgaard

54

RW Net 4

2.4.60

2.4.61

2.4.62

2.4.63

2.4.64

2.4.65

2.4.66

2.4.67

GetSpeed

Returns speed for the specified array index and link.

Syntax: GetSpeed(index, link: integer): TCost:s8)

GetTime

Returns time (minutes) for the specified array index and link.
Syntax: GetTime(index,link: integer): TCost/[sh

GlSarray

When using gfArray[:s1 as output format in functions like ExportNodes[5d) etc, this read-only
property holds the output.

Property GlSarray: TGISarray/ 2h
GlISoutputlnit

This function can be used to create a TGISwriter object.
It will be created with the same codepage as specified here[46),

Please see Feature Matrix| 2 for supported formats in your version.

Syntax: GlSoutputinit(filename: string; GF: TGISformat[:s%): TGISwriter [125

Hierarchy

This array property can be used to get or set the hierarchy of a link. A hierarchy is a value from 1
to 5. See attributes[5%,

If the hierarchy hasn't been set, it returns 0.

Property Hierarchy[Index: Integer]: integer

Length

This returns the length of the complete network.

Syntax: Length: TCost/ 158

Link2FromNode

Returns the number of the node at the start of the link. This is where digitizing has started.

Syntax: Link2FromNode(link: integer): integer

Link2ToNode
Returns the number of the node at the end of the link. This is where digitizing has ended.

Syntax: Link2ToNode(link: integer): integer

© 2022 RouteWare / Uffe Kousgaard

Main Classes 55

2.4.68

2.4.69

2.4.70

24.71

2.4.72

2.4.73

2.4.74

LinkCount

Return the highest link-number in the currently loaded network, which should equal to the number of
links in the corresponding GIS-network.

Syntax: LinkCount: integer
LinkLength
This function returns the length of the link.

If the value is 0, it means the link isn't valid for routing. Please go back and check the result of the
import process.

Syntax: LinkLength(link: integer): TCost/ 8
LinkLimit

Returns the maximum number of links according to your license. See feature matrix| 2" (network
size).

Syntax: LinkLimit: integer

Link2ExternallD

This method returns the external ID[8% from the internal ID.
Syntax: Link2ExternallD(link: integer): string
Link2RoadName

This method returns the roadname for a specific link and RoadFilelD. The roadfile[5%1 should have
been opened in advance.

Syntax: Link2RoadName(RoadFilelD,link: integer): string

Link2RoadNamelD

This method returns the roadnamelD for a specific link and RoadFilelD. The roadfile[5$1 should have
been opened in advance.

A roadnamelD is an integer, that corresponds to a roadname. It is more compact than a roadname
and it is faster to do comparisons using roadnamelD's.

RoadnamelD's can be translated to road names this way [63,

Syntax: Link2RoadNamelD(RoadFilelD,link: integer): integer

Location2Coordinate

This method translates a location into a set of coordinates, with the ability to offset it to one of the
sides of the link. When offset is positive, it will be on the right side of link, negative means left side.

This is the same setup as DistanceToLink[481 uses for side.

Syntax: Location2Coordinate(loc: TLocation|=%; offset: double): TFloatPoint[sh

© 2022 RouteWare / Uffe Kousgaard

56

RW Net 4

2.4.75

2.4.76

2.4.77

2.4.78

2.4.79

2.4.80

Location2CoordinateList

Same as Location2Coordinate[53), just for a whole list. LL is updated with the coordinates.

Syntax: Location2CoordinateList(LL: TLocationList[:"; offset: double)

LoopLink

This function returns true if a link is a loop link.

Syntax: LoopLink(Index: Integer): boolean

LoopLinks

This function returns true if any link in the network is a loop.

Starting from 1-1-2012, networks with loop links will not work in TCalc[78), TRouteCalc [0} and
TDrivingDirections|:5,

Syntax: LoopLinks: boolean

Matrix

This method calculates a matrix of distances between all combinations of nodes in NL. Distance
uses as-the-crow fly distances. If extra is true, the matrix will have an additional row and column,
allowing for special optimization in class TTSP[:5).

Syntax: Matrix(NL: TintegerList[%; extra: boolean): TMatrix/ 5%

MatrixDyn

This method calculates a matrix of distances between all combinations of locations in LL. Distance
uses as-the-crow fly distances. If extra is true, the matrix will have an additional row and column,

allowing for special optimization in class TTSP /8,

You should have called Location2CoordinateList/58 in advance.

Syntax: MatrixDyn(LL: TLocationList[:+"; extra: boolean): TMatrix[%)
MatrixDyn2

This method calculates a matrix of distances between all combinations of locations in LL1 and LL2.
Distance uses as-the-crow fly distances.

You should have called Location2CoordinateList[58 in advance.

Syntax: MatrixDyn2(LL1, LL2: TLocationList[:+"): TMatrix[%

© 2022 RouteWare / Uffe Kousgaard

Main Classes 57

2.4.81 MaxDegree
Returns the maximum degree in the network. This is typically 5-6.
Syntax: MaxDegree: integer

2.4.82 MBR

Returns the minimum bounding rectangle of the currently loaded network. Is set when calling
Open|[s8.

Syntax: MBR: TFloatRect|1sh
2.4.83 Node2Coordinate

Returns the coordinates of a node.

Syntax: Node2Coordinate(node: Integer): TFloatPoint/:sh
2.4.84 NodeCount

Return the highest node-number in the currently loaded network. The import[261 process assigns
node numbers automatically, this can not be controlled by the user.

Syntax: NodeCount: integer
2.4.85 NoDriveThroughCheck

This function checks if NoDriveThrough|9 bit is set for any link on the route and the logical area is
different from that of the first and last link on the route.

Returns true if the route isn't valid.

Syntax: NoDriveThroughCheck(route: TRoute[:¢h): boolean

2.4.86 NoDriveThroughinit

If you change the NoDriveThrough! 5% bit for some of the links after loading the network, you should
call this function again to have various internal datastructures reset.

Syntax: NoDriveThroughlnit

2.4.87 NoDriveThroughSet
This function checks if NoDriveThrough[of bit is set for any link in the network.

Syntax: NoDriveThroughSet: boolean

© 2022 RouteWare / Uffe Kousgaard

58

RW Net 4

2.4.88

2.4.89

2.4.90

2.4.91

2.4.92

NonCulDeSacNodes
This function returns a list of all nodes, that are not completely surrounded by CulDeSac[47 links.

It can be used together with function Nearest[931 to move from a node in a CulDeSac area.

Syntax: NonCulDeSacNodes(NL: TintegerList/1+7)
ObjectCheck
This method checks individual objects for issues. I.e. not definite errors, but just issues.

It looks for:

¢ Duplicate nodes

o Self-intersecting objects

¢ Objects with sharp turns (set turn_angle parameter to define threshold, 90 is a good value)

Returns the number of objects with issues.

Syntax: ObjectCheck(filename: string; GF: TGISformat[:sh; turn_angle: integer): integer
In standard version you are limited to networks with <10000 links.
OneWayGet

This method returns information about one-way status for a link.
0: No restrictions

512: Travel only allowed in the direction of digitization

1024: Travel only allowed in the opposite direction of digitization
1536: Closed

Syntax. OneWayGet(link: integer): word

OneWaySet

This method sets information about one-way status for a link.

0: No restrictions

512: Travel only allowed in the direction of digitization

1024: Travel only allowed in the opposite direction of digitization
1536: Closed

Syntax. OneWaySet(link: integer; value: word)

Open

This method opens a street hetwork and loads all information into memory. Files are loaded from
Directory [48) property.

If attributes is true, attribute.bin is also opened.
Set coord3cache to true, unless you have limited RAM.

Set spatialindex to true, if you want to load the spatial index and use TSpatialSearch[73) methods.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 59

2.4.93

2.4.94

2.4.95

2.4.96

ExternallD parameter:

0: Do not open

1: Open, but no caching

2: Open, cache index

3: Open, cache index + keys

Syntax: Open(attributes, Coord3Cache, spatialindex: boolean; externalid: integer)
OpenAttributes

This method (re)opens the attributes file. Files are loaded from Directory [48) property.

Syntax: OpenAttributes()

OpenLimit

Use this method to open limit files. Filenumber should refer to the naming of the file, while LimitID is
from 1 to 9. It is important to open them in sequence or the routing restrictions will not work. For
instance open limitiD 1 and 2, but not 4 or higher.

Syntax: OpenLimit(FileNumber, LimitID: integer; bitpattern: boolean)

See also Limits[8%, LimitFilelndex 3%, GetLimit[53), SetLimit[62) and TCalc.SetLimit[93\.

OpenRoadName
This method opens a roadname| 8 file, previously setup through import.

Specify the number of the file (1..99) and if it should be cached. It is only relevant to cache if you
plan to generate MANY driving directions.

Syntax: OpenRoadName(RoadFilelD: integer; cache: boolean)
ParallelLinks

Identifies group of links, which start and end at the same two nodes. These might give problems in
some networking algorithms ("emme/2" for instance).

RW Net has no problem with parallel links, unless you want to apply a turn restrictions from one
parallel link to another and only want it at one of the 2 nodes they have in common.

The function returns the number of parallel links found.

The generated GIS file contains fields for:

e Link: Original link ID

e Group: 1, 2,3

e Samelength: Logical value, which is true if all links in the group has the same length. This usually
means the same link has been digitized twice.

Syntax: ParallelLinks(filename: string; GF: TGISformat[:sh): integer

In Standard version you are limited to networks with <10000 links.

© 2022 RouteWare / Uffe Kousgaard

60 RW Net 4

2.4.97 PRJ
This property is set when calling Open|[sé\.
property PRJ: string

2.4.98 RandomLocation
Returns a random location.

Syntax: RandomLocation(r: TRandom[:): TLocation[:s®;

2.4.99 RandomNode

Returns a random node.

Syntax: RandomNode(r: TRandom([:%): integer;
2.4.100 RandomPoint

Returns a random point on the network.

Itis a coordinate within 10 meters of a location.

Syntax: RandomPoint(r: TRandom|[:43): TFloatPoint[:sh;

2.4.101 ReadCost

This method allows you to read speed for all links from a single DAT or DBF file.

Specify the full filename, including path.

Fieldindex is 0-based.

If fieldname is defined, fieldindex is ignored.

If cost is O or negative for any link, it is ignored.

Syntax: ReadCost(index: integer; filename: string; fieldindex: integer; fieldname: string);
2.4.102 ReadSpeed

This method allows you to read speed for all links from a single DAT or DBF file.

Specify the full filename, including path.

Fieldindex is 0-based.

If fieldname is defined, fieldindex is ignored.

if mph=true, all speeds are assumed to be in mph and multiplied by 1.609 when read from the file.

If speed is O or negative for any link, it is ignored.

Syntax: ReadSpeed(index: integer; filename: string; fieldindex: integer; fieldname: string; mph:
boolean);

© 2022 RouteWare / Uffe Kousgaard

Main Classes 61

2.4.103 ReadTime
This method allows you to read speed for all links from a single DAT or DBF file.
Specify the full filename, including path.
Fieldindex is 0-based.
If fieldname is defined, fieldindex is ignored.
If time is O or negative for any link, it is ignored.
Syntax: ReadTime(index: integer; filename: string; fieldindex: integer; fieldname: string);

2.4.104 RoadClass

This array property can be used to get or set the road class of a link. A road class is a value from O
to 31. See attributes[5.

Property RoadClass[Index: Integer]: integer
2.4.105 RoadName2RoadNamelD
This method translates a roadname into the corresponding roadname ID.

Syntax: RoadName2RoadNamelD(RoadFilelD: integer; roadname: string; ignorecase: boolean):
integer

2.4.106 RoadNamelD2RoadName
This method returns roadname for a roadname ID.
Syntax: RoadNamelD2RoadName(RoadFilelD,RoadNamelD: integer): string

2.4.107 RoadNameMaxWidth
This method returns the maximum width for an open roadfile and for a specific codepage. This can
_?_igsed when writing to a TGISwrite[125 output with fixed field width, such as DBF, SHP, MIF and
Syntax: RoadNameMaxWidth(RoadFilelD: integer; Codepage: TCodePage): integer

2.4.108 RouteLength
This method returns the length of a route.

See also RouteCost[91 and RouteTime[92\.

Syntax: RouteLength(Route: TRoute[:sH): TCost/s8)

2.4.109 SavelLimit

This method can save a limit file, either create it from scratch or replace an existing one after
updates has been made.

Syntax: SaveLimit(FileNumber, LimitID: integer);

© 2022 RouteWare / Uffe Kousgaard

62

RW Net 4

2.4.110 Select

This method can be used for selecting from the street network.

Output is stored in BA. New selections are set and added to any previous selections in BA.
Roadclass_min and roadclass_max specifies the interval for selections. Use 0 and 31 to ignore.
Hierarchy_min and hierarchy_max specifies the interval for selections. Use 0 and 5 to ignore.
You can specify a RoadFilelID and RoadNamelD to select a specific roadname. Use 0 to ignore.

For each of the bits 8 - 15 in the attribute[53 you can specify the value 0 or 1. Use 2 to ignore.

Syntax: Select(BA: TBitArray;
roadclass_min,roadclass_max,hierarchy _min,hierarchy _max: integer;
RoadFilelD,RoadNamelD: integer;
bit8,bit9,bit10,bit11,bit12,bit13,bit14,bitl5: byte)

2.4.111 SelectLimit

This method can be used for selecting from the street network.
Output is stored in BA. New selections are set and added to any previous selections in BA.
It selects all links where LimitID is in the range limit_min to limit_max.

Syntax: SelectLimit(BA: TBitarray[:; LimitiD: integer; limit_min,limit_max: byte);

2.4.112 SelectLinksWithLimits

This method can be used for selecting from the street network.
Output is stored in BA. New selections are set and added to any previous selections in BA.

It selects all links with a limit defined. If includeoneway is true, it will also select links where both
oneway bits| 5 are set (512 + 1024).

Syntax: SelectLinksWithLimits(BA: TBitArray:4), includeoneway: boolean);

2.4.113 SetCost

This method sets cost for a single link and array index.

Normally cost has to be a positive number, unless you set AllowNegativeCost[42},

Syntax: SetCost(index,link: integer; cost: TCost)

See also CreateArrayCost[4P, CalculateCost[43), GetCost[531 and TCalc.SetCheapest/ 92\,

2.4.114 SetLimit

This method sets limit for a single limitID and link.
You need to have called OpenLimit[5% in advance to setup the memory.

This doesn't change any file on disk.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 63

Syntax: SetLimit(limitID,link: integer; value: byte)

2.4.115 SetLimitBit
This method sets the limit (true/false) for a single limitiD, link and bit (0-7).
You need to have called OpenLimit|591in advance to setup the memory.
Itis aimed at bitpatterns.
This doesn't change any file on disk.
Syntax: SetLimit(limitID,link: integer; bit: byte; value: boolean)

2.4.116 SetSpeed

Sets speed for the specified array index and link. Internally it is the corresponding time, that is
stored.

See also MaxSpeed| 83,
Syntax: SetSpeed(index,link: integer; speed: TCost/1st)
2.4.117 SetTime
Sets time (minutes) for the specified array index and link.
Syntax: SetTime(index link: integer; time: TCost/sb)
2.4.118 SkipLinks2BitArray
This procedure will copy bit 15 from the attribute[53 to a bitarray, for use in spatial searches.
Syntax: SkipLinks2BitArray(BA: TBitArray)
2.4.119 Split
This method will create entries in LL for all links in the network and for every x km.
I_Example: If the value of distance parameter is 1 km and a link is 3.6 km long, entries will be created
:Iiliz::)ljt = false: 1, 2 and 3 km (3 entries)
Evenout = true: 0.9, 1.8 and 2.7 km (3 entries)
No entries are created for links shorter than 1 km.

Call ExgortLinksm‘l afterwards to have the network saved, but with shorter links.

Syntax: Split(distance: TCost[:s®); evenout: boolean; LL: TLocationList[:4h)

2.4.120 SwaplList
This method swaps the order of coordinates in the variable.

Syntax: SwapList(var list: TFloatPointArrayEX)

© 2022 RouteWare / Uffe Kousgaard

64 RW Net 4

2.4.121 SwapOneWay

This method swaps all oneway restrictions, so they point in the opposite direction. If both oneway
bits[51 (9 and 10) are set, nothing happens.

It can be used to calculate isochrones from many-to-one, by first swapping the restrictions, doing it
one-to-many and then swapping back again.

This is for instance relevant, when doing a drivetime isochrone and it is more important how fast you
can get TO the center (example: hospitals), rather than getting FROM the center (example: fire
stations).
Call TurnSwap| 691 too, if you have turn restrictions.
Syntax: SwapOneWay

2.4.122 TurnAutoProcess

This method allows to automatically detect turns and add turn delays through out your network.

You can either use the built-in rules for adding delays for T-junctions and normal junctions, or
override these with events.

In any case, it should be specified if traffic is right- or left-hand. Left-hand is known from UK,
Ireland, Australia, New Zealand, Japan, India, South Africa etc.

It should also be specified if any nodes should be skipped completely. This could be nodes /
junctions which are part of ramps or use traffic lights, so you want to set up different rules.

We suggest calling TurnExportGIS[661 once you have called TurnAutoProcess to see what it actually
gives in minutes.

This method is quite slow for large networks, so use it with care.

Events

When using the events you will just get a list of links back, making up the intersection. This includes
intersections or nodes with degree > 2.

The list is ordered in the same way as is shown on the small maps below.

T-junctions:
TTurnTEvent = procedure(Sender: TObject; node, linkl, link2, link3: integer)

Normal junctions:
TTurnEvent = procedure(Sender: TObject; node: integer; links: TintegerArray [1s5)

Built-in rules
Delays for each road class in the network is supplied as a TRoadClassTurnCost/:s5 object. For all

links in each intersection the delay is then looked up, based upon their road class. If a turn involves
crossing multiple traffic flows in the intersection, these are added together as can be seen here:

For a T-junction, where 1-2 is the main road:

LIomee-n2

© 2022 RouteWare / Uffe Kousgaard

Main Classes

I
3

Delays for right-hand traffic:

From 3 to 1: 1.5 * (delayl+delay?2)

From 3 to 2: delayl

From 2 to 3: delayl

Other turns: No delay
Delays for left-hand traffic:

From 3 to 1: delay?2

From 3 to 2: 1.5 * (delay2 + delayl)

From 1 to 3: delay?2
Other turns: No delay

65

Main road is determined from geometry: The link combination closest to a straight line is the main

road.

For a normal intersection, where 1-3 is the main road:

Left-hand traffic

From 1 to 4: delay3

From 2 to 1: 1.5 * (delayl + delay3 + delay4)

From 2 to 3: delayl

From 2 to 4: 1.5 * (delayl + delay?3)

From 3 to 2: delayl
From 4 to 1: delay3

From 4 to 2: 1.5*(delayl + delay3)
From 4 to 3: 1.5*(delayl + delay2 + delay3)

Other turns: No delay

Main road gets detected from the delays. Largest delay means main road.

If opposing roads, 1-3, can't be identified as the main road, the intersection is skipped. This

happens if for instance 1-2 has the largest delay.

If the delay for all 4 roads is the same:

Delays for right-hand traffic:

Right turns: delay1

© 2022 RouteWare / Uffe Kousgaard

66 RW Net 4

Straight ahead: 2 * delay1
Left turns: 4.5 * delayl

Delays for left-hand traffic:

Left turns: delayl

Straight ahead: 2 * delayl
Right turns: 4.5 * delay1

For intersections with >4 links:

No processing occurs. You can use the events instead.

Syntax: TurnAutoProcess(index: integer; LeftHandTraffic: boolean; RCTC: TRoadClassTurnCost[s;
SkipNodes: TBitArray [1)

2.4.123 TurnClear

This method clears turn restrictions for the specified index.
Syntax: TurnClear(index: integer)
2.4.124 TurnCount
This method returns number of turn restrictions for the specified index.
Syntax: TurnCount(index: integer): integer;
2.4.125 TurnExportBin

This method saves all turn restrictions to a file on disk, which can later be loaded with function
TurnimportBin[7.

Bin files always use link ID as references.

Specify a full filename, preferably with along this pattern "turn*.bin" (makes it easier to recognize
the file).

Syntax: TurnExportBin(index: integer; filename: string)
2.4.126 TurnExportGIS

This method writes all turn restrictions to a TGISwrite, so it is easier to graphically view the turn
restrictions.

Specify a full filename.
Syntax: TurnExportGlS(index: integer; filename: string; GF: TGISformat]:sh)
2.4.127 TurnExportTXT

This method saves all turn restrictions to a text file on disk, which can later be loaded with function
TurnimportTXT[67. Internal link ID's are used in the output.

Specify a full filename.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 67

Syntax: TurnExportTxt(index: integer; filename: string)

2.4.128 TurnExportTXT2

This method saves all turn restrictions to a text file on disk, which can later be loaded with function
TurnimportTXT[67. External link ID's are used in the output.

Specify a full filename.
Syntax: TurnExportTxt2(index: integer; filename: string)
2.4.129 TurnimportBin

This method loads turn restrictions from a file on disk, created by TurnExportBin[66Y. It doesn't clear
the list first.

Specify a full filename.
Syntax: TurnimportBin(index: integer; filename: string)
2.4.130 TurnimportTxt

This method loads turn restrictions from a text file on disk. Supply a full filename, including folder. It
doesn't clear the list first.

The format is one or more lines, where each line stores one restriction with parameters stored in
space separated format. Different types of restrictions are possible:

: Simple Turn restriction, 2 external link ID's + 1 cost value

: Simple Turn restriction[68, 2 link ID's + 1 cost value

: TurnStandard|68), coordinates for node

: Mandatory turn, 2 external link ID's

: Mandatory turn[68), 2 link ID's

: Complex Turn restriction, >2 external link ID's + 1 cost value
: Complex Turn restriction[68), >2 link ID's + 1 cost value

O WNEO

File example:

/I Comment

0 A4003234 A4003127 -1

1 456 230 -1

2 -77.024098 38.902711

3 A4003234 A4003127

4 456 230

5 A4003279 A4003234 A4003127 -1
6 89 456 230 -1

Lines starting with // are ignored as comments.
The ITN converter will create turn restriction files in this format.

If you use turn restrictions with external ID's (type 0, 3 and 5), make sure you have called Open|[58)
with externallD>0 or you will get an error code returned.

© 2022 RouteWare / Uffe Kousgaard

68 RW Net 4

Type 0, 2, 3 and 4 gets translated into one or more type 1 during import and type 5 gets translated
into type 6 during import.

The function returns the number of errors during the import. That can be due to external ID's not
valid or non-existing turns.

Syntax: TurnimportTxt(index: integer; filename: string): integer;
2.4.131 TurnMandatory

This method defines that turns from link1 is only allowed if the next turn is link2.

Internally this is translated into a number of turn restrictions. These are only applied at the end of
link1, where it is actually possible to connect to link2.

If link1 and link2 are parallel links, you will get an error.
Syntax: TurnMandatory(index: integer; linkd,link2: integer)
2.4.132 TurnReset
Clears the list of turn restrictions.
Syntax: TurnReset(index: integer)
2.4.133 TurnRestriction
This method defines a restriction on turns from link1 to link2.
cost < 0: Turn prohibited
cost = 0: Remove turn restriction

cost > 0: Additional cost related to the turn (= delay).

If link1=link2 the restriction (a U-turn) is skipped. See here how to apply U-turn restrictions[96Y. It is
not possible to have delays for U-turns, they can only be either allowed or banned.

If link1 and link2 are parallel links, a turn restriction is added at both nodes. Prevent this by breaking
up one of the links.

Syntax: TurnRestriction(index link1,link2: integer; cost: TCost| 1sb)
2.4.134 TurnRestrictionComplex

This is the same method as TurnRestriction[681 except up to 6 links can be defined as making up the
restriction. If you need more than 6 links, use TurnlmportTXT[67 instead.

Syntax: TurnRestrictionComplex(index link1,link2, link3, link4,link5, linké: integer; cost: TCost/s8)

2.4.135 TurnStandard

Adds turn restriction on standard 4-degree intersection, which means no turns are allowed - only
driving straight through. The method also works for nodes with higher, but still even degree.

Syntax: TurnStandard(index,node: integer)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 69

2.4.136 TurnSwap
This method swaps the direction of all turn restrictions for the specified index.

Use it in combination with TNetwork. SwapOneWay (643, where you can read further details.

Syntax: TurnSwap(index: integer)
2.4.137 UpdateAlphas
Alpha is a parameter used internally by TRouteCalc[1oh to direct routes faster towards the target.

After changing speed, time or cost and before calculating routes with TRouteCalc [0}, you should
call this method.

For shortest path routing with TRouteCalc, the method is not required.
Syntax: UpdateAlphas

2.4.138 ValidCodePage

This function returns a codepage which matches the currently loaded roadnames.
If possible it will return the default codepage for the system, otherwise it will look through the list of
codepages and return the first match.

If TAB parameter is true, it returns a codepage valid for TAB/MIF output.
If TAB parameter is false, it returns a codepage valid for SHP/DBF output.

If the function returns O, it didn't find any codepage matching all roadnames (possible, but not likely
to happen).

Assign the value to CodePage|48) property.

Syntax: ValidCodePage(TAB: boolean): word;

List of codepages and matching charset name for TAB/MIF files:

1252, WindowsLatinl
1250, WindowsLatin2
1256, WindowsArabic
1251, WindowsCyrillic
1253, WindowsGreek
1255, WindowsHebrew
1254, WindowsTurkish
950, WindowsTradChinese
936, WindowsSimpChinese
932, WindowsJapanese
949, WindowsKorean

874, WindowsThai

1257, WindowsBalticRim
1258, WindowsVietnamese
437, CodePage437

850, CodePage850

852, CodePage852

857, CodePage857

© 2022 RouteWare / Uffe Kousgaard

70

RW Net 4

860, CodePage860
861, CodePage861
863, CodePage863
865, CodePage865
855, CodePage855
864, CodePage864
869, CodePage869
28591, 1S0O8859_1
28592, 1SO8859_2
28593, 1SO8859_3
28594, 1SO8859_4
28595, 1SO8859_5
28596, 1SO8859_6
28597, 1SO8859_7
28598, 1SO8859_8
28599, 1SO8859_9

2.4.139 Write

These methods are for writing results from various calculations directly to a DBF or DAT file. DAT is
part of a MaplInfo TAB file and similar to a DBF file.

All 4 variations below allow you to write to gfDecimal, gfFloat, gfinteger, gfSmallint and gfLogical
fields.
In any case values are written so they best possibly are stored in the underlying field.

Values which are too big, makes it raise an error, such as storing 100000 in a Smallint field (valid
range -32767 to 32767).
If you try to store a number in a Logical field, all values >0 are treated as True.

Length of TintegerArray, TCostArray and TBitArray need to match the number of records in the file.

TintegerList is treated as a list of records marked as True. If you have reset=true at the same time,
all other records are marked as false.

Fieldindex is 0-based. If you specify fieldname, it is used instead of fieldindex.

Syntax:

Write1(filename: string; fieldindex: integer; fieldname: string; value: TintegerArray [1s8);
Write2(filename: string; fieldindex: integer; fieldname: string; value: TCostArra 152‘I);
Write3(filename: string; fieldindex: integer; fieldname: string; value: TBitArray [1:8):

Writed(filename: string; fieldindex: integer; fieldname: string; value: TIntegerList| 47, reset: boolean);

2.4.140 Pro Methods
2.4.140.1 DownStream

This method can be used for tracing in an oriented network. It will start from a link and trace in the
forward (downstream) direction as long as there is only one directed link from the next node (unique
direction for flow). Links without direction are ignored. You can use direction 512 / 1024 as in a
normal street network.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little relevance
for street networks.

Output linklist is in the order of flow, starting with the input link.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 71

Syntax: DownStream(link: integer; linklist: TintegerList[:4%)

See also Trace[72 and UpStream[73
2.4.140.2 ExportTrafficList

This method will export TL, so it can be viewed externally.

If lines = false:
Output is shown as point objects with origin / destination records shown as "O" and "D".

If lines = true:
Output is shown as lines connecting origin and destination.

Syntax: ExportTrafficList(filename: string; GF: TGISformat[:sn; TL: TTrafficList[:+5); lines: boolean)
2.4.140.3 Join

This will identify neighbouring links and join them in groups. The grouping can be defined by setting
3 parameters, where at least one of them need to be <> "ignore":

Topology

0: Ignore it

1: Connected

2: Intersection to intersection (intersection: Node with degree[4 >= 3)
3: Intersection to intersection, but ignoring cul-de-sac links

RoadFilelD
0: Ignore roadname
N: Split when roadname changes

Attributes:
False: Ignore attributes
True: Split according to attributes

Result is stored in IA array: Indices with the same value belong to the same group.
Result can also be written to a TGISwrite output, if filename is specified. If GF = gfArray, just set
filename to something.

Using parameter combination (0,0,false) is not allowed, since it would join ALL links into one large
object.

When using topology=2, joins that would result in loops, are avoided.

Normally it used with these parameters, when the output is to be used for routing:
Topology = 2

RoadfileID >0, if the network is to be used with driving directions.

Attributes = true.

If turn restrictions are defined, they are exported to a file with ".turn" as extension with the updated
link ID's as reference.

Syntax: Join(filename: string; GF: TGISformat[:sh; topology,RoadFilelD: integer; attributes: boolean;
var IA: TintegerArray [153)

© 2022 RouteWare / Uffe Kousgaard

7 RW Net 4

2.4.140.4 Node2Link
This method returns the ID of the links connected to a node.
Iterate through the links this way:

for index = 1 to Degreel[4? node)
print node2link(node, i ndex)
next

Syntax: Node2Link(node,linkindex: integer): integer
2.4.140.5Trace

This method can be used for tracing in a network. It will start from a link and trace in all directions
until a node is reached that is marked with True in the Valves input parameter.

Oneway restrictions are ignored.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little relevance
for street networks.

Output parameter ValvesReached shows which of the valves was reached.
Output parameter LinksReached shows which of the links was reached.

Syntax: Trace(link: integer; Valves, ValvesReached, LinksReached: TBitArray [145)
See also DownStream[761 and UpStream|73)

Example:

Input:

Start link: 1 (red labels)

Valves: 1, 11, 15, 16, 17 (blue dots)

Output:
ValvesReached: 1, 11
LinksReached: 1, 2, 3, 4, 5.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 73

19

17

3 22
/ 24 18

12

5

5

kj 1
i3
Lz

T

2 1 q
11 20 23
25
14
i
L
\:u

2.4.140.6 UpStream

2.5

This method can be used for tracing in an oriented network. It will start from a link and trace in the
reverse (upstream) direction, branching if required. Links without direction are ignored. You can
use direction 512 / 1024 as in a normal street network.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little relevance
for street networks.

Upstream links are marked as true in the output, including the input link.
Syntax: UpStream(link: integer; links: TBitArray [:+)

See also DownStream[78 and Tracel 72

TSpatialSearch

This class is for making spatial searches in the network. Generally as either searching for nodes or
links (locations).

On top of this, various topological checks can also be performed: FindNonConnected[74,
FindOverPasses[74 and Split| 78\,

When opening the network[58), make sure parameter "spatialindex" is true.

© 2022 RouteWare / Uffe Kousgaard

74

RW Net 4

251

252

2.5.3

2.5.4

Create

When creating an instance of TSpatialSearch, it is required to specify a network.
Syntax: Create(NW: TNetwork| 38)

FindOverPasses

This method finds where 2 links intersect and add these locations to LL (LL is not cleared first). Two
entries are added every time, one for each link.

There should only be overpasses, where there is also a bridge / tunnel in real life.

You can call ExportLinks[4% afterwards if you want to split the links where an overpass was found.
The FindOverPasses algorithm makes sure that exactly the same coordinates are used for both
pairs of links, so snap is guaranteed if you call Timport on the resulting output from ExportLinks.
See also SplitAndSnapl 781.

Syntax: FindOverPasses(LL: TLocationList/ M)

In standard version you are limited to networks with <10000 links.

FindNonConnected

This method performs a topological check:

It cdhecks if there within a radius of all nodes in the network are links, which are not connected to the
node.

Usually set radius = 0.005 km or an even smaller value.

Output is a TGISwrite with fields for node and link numbers and the distance from the first node to
the node / link. Visually a line is drawn.

It returns the number of records in the result. If no records at all, then no file is generated.

Syntax: FindNonConnected(filename: string; GF: TGISformat/:s%; Radius: double): integer

In standard version you are limited to networks with <10000 links.
FindNonConnectedNodes

This method performs a topological checks:

It checks if there within a radius of all nodes in the network are other nodes, which are not directly
connected to the first node.

Usually set radius = 0.005 km or an even smaller value.

Output is a TGISwrite with fields for node and link numbers and the distance from the first node to
the node / link. Visually a line is drawn.

It returns the number of records in the result. If no records at all, then no file is generated.
Syntax: FindNonConnected(filename: string; GF: TGISformat[+s™; Radius: double): integer

In standard version you are limited to networks with <10000 links.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 75

255 GeoJSON

When using gfGeoJSONI[:sh as output format in functions like FindNonConnected[74) etc, this read-
only property holds the output, if filename is empty.

Property GeoJSON: string
2.5.6 GlSarray

When using gfArray [151 as output format in function FindNonConnected[74), this read-only property
holds the output.

Type: TGISarray[:zh
2.5.7 JoinNodes
This method will find groups of nodes, which are very close together, without being connected.

Since it is experimental, no further details are available.
It is not available in the DLL version.

Syntax: JoinNodes(Radius: double; Nodelists: TintegerLists[14%);
2.5.8 MBRselect
When set to true, selections are done as a square around the center point, rather than a circle
(radius).
This makes the selection faster.
Type: boolean (default: false)
2.5.9 NearestLink
This function will locate which link you are driving on, when both GPS coordinate and bearing (O-
359) are known.
0 = North, 90 = East, 180 = South, 270 = West.
This is especially useful, when there are many intersecting roads or two parallel roads.
Specify a search radius, such as 0.025 km, since it uses SelectLinks[77) internally.

The result is returned as a list of possible matches, with the best guess at the top of the list.

Syntax: function NearestLink(P: TFloatPoint[s%; Bearing, SearchRadius: double):
TGPSMatchList[:;

See also NearestLocation[73}
2.5.10 NearestLocation
This locates the nearest location from P.

It returns this information:
e Location
e Side of the link (-1: Left or +1: Right)

© 2022 RouteWare / Uffe Kousgaard

76

RW Net 4

2511

2.5.12

2.5.13

2.5.14

2.5.15

e Distance
e Coordinates of location on link

A typical use is converting large amounts of GPS coordinates into network locations. An example of
performance is:

A street network with 200,000 links, latitude/longitude coordinates: 2000 calcs per sec (using an
AMD A6-5400K)

Larger street networks makes it slightly slower, while using projected coordinates makes it faster.
Setting MaxVerticesPerCell[29) at a lower value than default can also make it slightly faster.

Syntax: NearestLocation(P: TFloatPoint[:s™; var Loc: TLocation[:s%; var side: integer; var distance:
double; var Pnew: TFloatPoint] 1s%)

See also DistanceToLink[48), NearestLocationSimple[761 and SkipLinks| 7.

NearestLocationSimple
This finds the nearest location from P.

Syntax: NearestLocationSimple(P: TFloatPoint[:sh): TLocation| s

See also DistanceToLinkSimple[48), Nearestl ocation[751 and SkipLinks[7?.

NearestLocationSimpleList

Same as Nearestl ocationSimple[7€), except it processes LL.

Syntax: NearestLocationSimpleList(LL: TLocationList[14%)

NearestNode

This locates the nearest node from P. Returns distance to the node too.

Syntax: NearestNode(P: TFloatPoint| :s%; var node: integer; var distance: double)

See also NearestNodeSimple[78)

NearestNodeSimple

This locates the nearest node from P.

Syntax: NearestNodeSimple(P: TFloatPoint(:s"): integer;
NearestVertex

This locates the nearest vertex from P.

It returns this information:

e Link

o Index of vertex (0-based)
e Distance

Syntax: NearestVertex(P: TFloatPoint[sh; var link, index: integer; var distance: double)

See also GetGISSection[53)

© 2022 RouteWare / Uffe Kousgaard

Main Classes

2.5.16

2.5.17

2.5.18

2.5.19

2.5.20

25.21

2.5.22

77

SelectLinks
This method selects all links within a radius from P.

Result is returned as a list of links in List and as a bit pattern in BA.

Syntax: SelectLinks(P: TFloatPoint[:sh; Radius: double; List: TintegerList[1h; BA: TBitArray [+3)

See also SkipLinks[77,

SelectLinksArray

Same as SelectLinks[77, but result is only returned in the array.

Syntax: SelectLinksArray(P: TFloatPoint/ :sh; Radius: double; BA: TBitArray[14})
SelectLinksList

Same as SelectLinks[77), but result is only returned in the list.

Syntax: SelectLinksList(P: TFloatPoint[:sh; Radius: double; List: TintegerList[+h)
SelectNodes

This method selects all nodes within a radius from P.

Result is returned as a list of nodes in List and as a bit pattern in BA.

Syntax: SelectNodes(P: TFloatPoint[:sh; Radius: double; List: TintegerList| 17 BA: TBitArray 1)

SelectNodesArray

Same as SelectNodes| 77, but result is only returned in the array.

Syntax: SelectNodesArray(P: TFloatPoint[:s"; Radius: double; BA: TBitArray [145)
SelectNodesList

Same as SelectNodes[77, but result is only returned in the list.

Syntax: SelectNodesList(P: TFloatPoint[:sh; Radius: double; List: TintegerList[?)
SkipLinks

This proper?_gefines if any of the links should be skipped in methods NearestLocation[73) and
7 0

SelectLinks

Default: nil

Type: TBitArray

© 2022 RouteWare / Uffe Kousgaard

78

RW Net 4

2.5.23

2.5.24

2.6

SkipNodes

This proper?_gefines if any of the nodes should be skipped in methods NearestNode| 761 and
SelectNode| 77,

Default: nil
Type: TBitArray
SplitAndSnap

This methods performs a search around nodes with degree <3. If any location on a link is found in
the search, and the link is not connected to the original node and not a node at the same time (i.e.
start or end of the link), the location is added to LL (LL is not cleared first). The same coordinate is
also added to LL, with the original node as reference together with special codes, that can be
handled’%é‘ ExportLinks[48, so links can be split and updated correctly for exact snap in future

2

TImport runs.

You can also choose to call ExportLocationList[531 to visually check and edit, where issues has been
found.

The method returns the number of positive searches. LL holds ~2-3 times as many items.
Syntax: SplitAndSnap(Radius: double; LL: TLocationList[:4"): integer

In standard version you are limited to networks with <10000 links.

TCalc

This class is used for one-to-many route calculations, the Dijkstra algorithm is used. Use
TRouteCalc|[+oh for one-to-one route calculations.

Typical sequence when using TCalc is like this:
Call SetTime[631 and/or SetCost[621 if you want to calculate more than just length of routes.

Define which criteria you want and call the corresponding method: SetShortest/93), SetFastest[93) or
SetCheapest[92\,

The SkipLinkList[931 can be used to ignore certain links in the route calculations.
Eventually set MaxCost[89), if you want to create a smaller isochrone than otherwise.
MaxSpeed|[831 can be used to override the speed for the network, in case of slow vehicles.

NoDriveThrough[9% can be set to avoid areas, where you are not allowed to drive through ("no
access").

Finally call one of the actual isochrone methods, possibly followed by additional query methods:

If you just want cost:
e IsoCostl82 or IsoCostList[83) or IsoCostListN[821 > NodeCost[91 or LinkCost[861
e 1soCostDyn[82 or IsoCostListDyn[82 or 1soCostListNDyn[83) > NodeCost[93 or

LinkCostDyn[8#
e IsoCostDynApproach[9? > LinkCostDynApproach|[98)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 79

2.6.1

If you want cost and the route:

e IsoCost[82 or IsoCostList[82) > RouteFind[91 > RouteCost[o1), RouteLengthl 6ty and / or
RouteTime[92}

e IsoCostDynl[82 or IsoCostListDyn|[8 or IsoCostListNDyn[83) > RouteFindDyn[92) >
RouteCost/ 9B, RouteLengthlef and / or RouteTime[921

e IsoCostDynApproach[e? > RouteFindDynApproach[e9) > RouteCost/91), RouteLength[61) and /
or RouteTime| 9

Matrix methods: (to TMatrix[s%)
e Matrix[56)

e Matrix2[sh

e MatrixDyn[563

e MatrixDyn2[e

Matrix methods: (output to GIS files)
e MatrixOut[s&)

e MatrixDynOut/s$

e MatrixPOut[8

Other methods:
Nearest/ 90}
NearestDyn[9%)
NearestOpen| 9
NearestOpenDyn|[98

ethods for isochrones (see also here[16Y):
DriveTimeSimple[8®

M
1.
2. IsoPoly[8%
3.
4.

AlphaShape[961 (Pro only)
IsoLinkDriveTime[83)

It is worth noting that Cost in TNetwork is different from Cost in TCalc:

¢ In TNetwork it is a generalized cost for a single link (or turn delay), much similar to the length or
time of a link.

¢ |n TCalc it is the result of a route / isochrone calculation from a starting point to somewhere else.
The cost can be either distance (SetShortest[93), time (SetFastest[93) or "cost" (SetCheapest[o2y
), depending upon which criteria has been set up.

Create

When creating an instance of TCalc, it is required to specify a network and if turnmode should be
true or false.

If you are going to use SetCheapest[92in combination with negative costs, turnmode has to be true.

Syntax: Create(NW: TNetwork|38); Turnmode: boolean)

© 2022 RouteWare / Uffe Kousgaard

80

RW Net 4

2.6.2

2.6.3

2.6.4

2.6.5

DecimalsDist

When generating file output, you can use this property to define number of decimals in distances.
A negative number means up to 10 decimals.

Default: -1

Type: smallint

DecimalsTime

When generating file output, you can use this property to define number of decimals in time and
time spans.

A negative number means up to 10 decimals.

Default: -1

Type: smallint

DistanceUnit

When generating output to disk, you can use this property to use miles in the output.
This affects:

MatrixOut[88, MatrixPOut[89), and MatrixDynOut[8&)

NearestNDyn|[105 and NearestNP [10h
RoutePairs| 0% and RoutePairsP| 0%

Here it is the steplist values, which may get cha;w_%gz‘d, if using shortest path:
IsoLinkDriveTime[83) and IsoLinkDriveTimeDyn[8
AlphaShape[98} and DriveTimeSimpleDyn[8®

Default: duKm
Type: TDistanceUnit[:sh)
DriveTimeSimpleDyn

This is a simpler version of the voronoi[+8) based method for drivetime isochrones. It uses a single
location as center.

Angle should be in the range 0 to 45, with 0 giving the convex hull. Small values make the isochrone
follow the network more closely and larger values makes it closer to the convex hull.

Smoothing |8 can be enabled, but may give degenerate results when combined with multiple steps.

If IncludeLinks is false, only the nodes of the network is used when generating the output.
Much faster, but also less accurate.

Syntax: DriveTimeSimpleDyn(filename: string; GF: TGISformat[:sh; location: TLocation; Steps:
TStepList[+%; angle: double; doughnut, IncludeLinks: boolean);

See also Isochrones - overview/[18)

Example with 1-2-3 km, angle = 3 degree, doughnut = true and smoothing = (5,3,5):

© 2022 RouteWare / Uffe Kousgaard

Main Classes 81

A
2.6.6 GeoJSON

When using gfGeoJSONI[1sh as output format in functions like MatrixOutsd) etc, this read-only
property holds the output, if filename is empty.

Property GeoJSON: string
2.6.7 GlSarray

When using gfArray[:sh as output format in functions like MatrixOut[83} etc, this read-only property
holds the output.

Type: TGlSarray |15

2.6.8 IgnoreOneway
Set this property to true, if you want to ignore one-way restrictions in the route calculations.
Default: false

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

82

RW Net 4

2.6.9

2.6.10

2.6.11

2.6.12

2.6.13

IsoCost

This method calculates an isochrone from the node. The size of the isochrone can be restricted by
setting MaxCost/ 83,

Syntax: IsoCost(node: integer)
IsoCostDyn

This method calculates an isochrone from the location. The size of the isochrone can be restricted
by setting MaxCost[89\.

An error will be raised if location is on a loop link. Check with LoopLink[56\ function in advance.
Syntax: IsoCostDyn(Loc: TLocationsh)
IsoCostList

This method calculates an isochrone from node, which extends until all nodes in NL has been
reached. If MaxCost[8d) has been set, it may stop sooner.

Syntax: IsoCostList(node: integer; NL: TintegerList[)
IsoCostListDyn

This method calculates an isochrone from the location, which extends until all locations in LL has
been reached.

An error will be raised if location is on a loop link. Check with LoopLink[561 function in advance.
Syntax: IsoCostListDyn(Loc: TLocation[:sh; LL: TLocationList[1+h)
IsoCostListN

This method calculates an isochrone from node, which extends until the first N nodes in NL has
been reached.

If MaxCost[8$) has been set, it may stop sooner.

Result is returned in IL as a sorted index into NL. Length of IL may be < N, if not all nodes in NL is
reached.

Example:

NL = {100, 200, 300, 400, 500, 600}
N=3

cost(100) = 32

cost(200) = 45

cost(300) = 103

cost(400) = 77

cost(500) = 80

cost(600) = 10

Output: IL = {5, 0, 1}
Cost of index 5, 0 and 1 is 10, 32 and 45.

Syntax: IsoCostListN(node: integer; NL, IL: TintegerList/+™; N: integer)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 83

2.6.14

2.6.15

2.6.16

IsoCostListNDyn

Same method as IsoCostListN[82), just using locations instead:

An error will be raised if location is on a loop link. Check with LoopLink[561 function in advance.
Syntax: IsoCostListNDyn(Loc: TLocation[s8;; LL: TLocationList[%; IL: TintegerList[+; N: integer)
IsoCostMulti

This method calculates an isochrone from a list of facilities (NL, nodes), identifying which facility is
nearest. No more than 65535 nodes are allowed in the list.

For each facility you can define if there is an offset, i.e. a cost>0 value that is added to the cost.
This can for instance be used to create drivetime regions around a number of fire-stations, which
has different start times. Set parameter to nil, if offset=0 for all facilities.

You can set MaxCost if you only want smaller isochrones in your calculations.

BestCost returns the cost to the nearest facility.

BestFacility returns an index into NL. If value is 65535, it means the node wasn't in reach of any
facility.

Both have as many elements as there are nodes.

You can not combine this method with subsequent calls to RouteFind[91), LinkCostDyn[8?,
NodeCost[9% or any other methods. You should only use the two output parameters as result.

Syntax: IsoCostMulti(NL: TintegerList[:™; Offset: TCostArray [:s%; var BestCost: TCostArray [1s8); var
BestFacility: TWordArray [16)

IsoLinkDriveTime

This method shows the distance from one more centers (nodes) to each location on a street
network.

Internally it uses IsoCostMultil 83 and shares the NL and Offset parameters with this method.

StepList is a number of cost values, indicating which values are used as steps in generating the
output. For instance steps 1, 2 and 3 will generate steps 0-1, 1-2 and 2-3.

SL is a list of identifiers for the output. As many as there are items in NL. If SL=nil, you will get
0,1,2... identifiers instead.

Output is a polyline theme and the polylines are dynamically segmented to show the exact position
where it changes, which center is the nearest. Polylines are oriented so they point away from the
center.

If you run this method in turnmode, certain smaller details next to actual turn restrictions may come
out wrong.

Syntax: IsoLinkDriveTime(filename: string; GF: TGISformatsh; NL: TintegerList[:h; Offset:
TCostArray[:sh; StepList: TStepList[:h; SL: TStringList/:sh)

See also Isochrones - overview[16

© 2022 RouteWare / Uffe Kousgaard

84 RW Net 4

Example:

L

2.6.17 IsoLinkDriveTimeDyn

The same as IsoLinkDriveTime[83), except it uses a single location as center.

Syntax: IsoLinkDriveTimeDyn(filename: string; GF: TGISformat/%; loc: TLocation[8); OffSet:
TCostl1sh; SteplList: TStepList| 1)

2.6.18 IsoLinkServiceArea
This method shows which center (node) is the nearest on a street network.
Internally it uses IsoCostMultil 83 and shares the NL and Offset parameters with this method.
Output is a polyline theme and the polylines are dynamically segmented to show the exact position

where it changes, which center is the nearest. Polylines are oriented so they point away from the
center.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 85

If you run this method in turnmode, certain smaller details next to actual turn restrictions may come
out wrong.

Syntax: IsoLinkServiceArea(filename: string; GF: TGISformat[sh; NL: TintegerList[:h; Offset;
TCostArray | 1s5)

Example:
="' 1

..-<

F
AT

o ——
m

e
HSE

-

HIC=

.[
N
2.6.19 IsoPoly

This method is for calculating input to the voronoil:#+based methods for drivetime isochrone,
service areas etc.

Main input is two lists with nodes and locations. If you only have nodes or locations, set the other list
parameter to nil. No more than 65535 items are allowed in the lists in total.

The lists contain your facilities or just a single facility. Isochrones are calculated for each of them
and the output keeps track of which node / location was the nearest and cost. This is done for all
nodes in the network.

For each facility you can define if there is an offset, i.e. a cost>0 value that is added to the cost.
This can for instance be used to create drivetime regions around a number of fire-stations, which
has different start times. Set parameter to nil, if offset=0 for all facilities.

Addnodes can be used to define if the calculation should be done for additional locations along long
links. If the value of addnodes is, say 1 (km), and a link is 3.6 km long, additional nodes will be

inserted at 0.9, 1.8 and 2.7 km in the output. No additional nodes are added if the link is shorter than
1 km.

© 2022 RouteWare / Uffe Kousgaard

86

RW Net 4

2.6.20

2.6.21

2.6.22

MaxCost[891 & MBR can both be used to define if the isochrone should be restricted in size. If
MaxCost[83=0 and MBR=cFRNull, the whole network is covered.

Includelinks can be used to decide which links should be part of the output. Nodes are only part of
the output if they are connected to at least one link, that is included. Specify nil, if all links should be
included.

If you run this method in turnmode and with addnodes<>0, certain smaller details next to actual turn
restrictions may come out wrong.

AddNodesEx can be used to define a smaller value of addnodes, for selected links which require
this.

AddNodesExList is a parameter, which defines the selection.

This can typically be used for 2 parallel roads (motorways), which would otherwise end up as zig-
zag on a map.

See also IsoPolyFast[88), IsoPolyRandomnization[s&) and Isochrones - overview|18).

Syntax: IsoPoly(NL: TintegerList[=+™; LL: TLocationList[+; Offset: TCostArray =8}, addnodes,
addnodesEx: TCost/:s8; MBR: TFloatRect[:s7; includelinks, addnodesExLinks: TBitArray [14):
TPolyGeneration| 148

IsoPolyFast

This function is the same as IsoPoly [83), except the MBR parameter is replaced with a buffer
parameter.

Internally the function automatically calculates MBR from the items in NL and LL, MaxCost[83 and
buffer. This makes it much faster and the recommended solution for preparing input for drive time
polygons.

Buffer should be specified in km. Suggested values are 2 km for urban areas and 10 - 20 km in
rural areas (for voronoi[4 calculations).
If you use the output for Alpha shapes|96), then buffer = 0 is sufficient.

Syntax: IsoPolyFast(NL: TintegerList[:«n; LL: TLocationList[:+"; Offset: TCostArray [}, addnodes,
addnodesEx, buffer: TCost[:s%; includelinks, addnodesExLinks: TBitArray [+45): TPolyGeneration[:

IsoPolyRandomnization

Set this property to true, if you want to add a very small randomnization to the coordinates output
from the 1soPoly[83 methods.

This is sometimes needed if you are using low values for the addnodes parameter due to numerical
instabilities in the

Default: false
Type: boolean
LinkCost

TurnMode[93 = false:
Returns the maximum cost of the two end nodes of the link.

TurnMode[93 = true:

© 2022 RouteWare / Uffe Kousgaard

Main Classes 87

2.6.23

2.6.24

2.6.25

2.6.26

Link>0: Returns the cost of going to the ToNode of the link.
Link<0: Returns the cost of going to the FromNode of the link.

Syntax: LinkCost(link: integer): TCost/[15
LinkCostDyn

Returns the cost of getting to a specific location of a link.
This method can be used after a call to either 1soCost/82) or IsoCostDyn[&2) function.

Syntax: LinkCostDyn(loc: TLocation[): TCost[158

Matrix

This method calculates a matrix, based upon the nodes in NL.
Eventually set extra = true for use with TTSP[3% - see explanation in TTSPmode|:63.

Set symmetric = true, if you can do with a symmetric matrix. This makes calculations faster.
But it is not recommended if you have oneway restrictions in the network.

If you want to do a N x M matrix rather than N x N, use Matrix2[s?),
Syntax: Matrix(NL: TintegerList[1, extra,symmetric: boolean): TMatrix[sh
Matrix2

This method calculates a matrix, based upon the nodes in NL1 and NL2. Calculations are fastest if
NL1 is the smallest list.

See also Matrix[8.

Syntax: Matrix2(NL1, NL2: TIntegerList[sh): TMatrix[%

MatrixBuffer

When calculating matrices for a small area in a big street network, it is possible to speed up
calculations by restricting calculations to the relevant part + a buffer.

Experience show a factor 2 can be obtained in the best case.

If the buffer gets specified too small, you risk not finding the correct route or even not finding a
route at all.

We recommend using 5 km for urban areas, in more rural areas use a larger value.
If you use 0 or a negative value, the whole network is considered (default).

Applies to: Matrix 58, Matrix2[8", MatrixDyn |58, MatrixDyn2[88), MatrixOut[88), MatrixDynOut[e&)
and MatrixPOut] 89\,

Default: 0 km

Property MatrixBuffer: double;

© 2022 RouteWare / Uffe Kousgaard

88 RW Net 4

2.6.27 MatrixDyn

Same method as Matrix| s, just with locations instead of nodes:

Syntax: MatrixDyn(LL: TLocationList[:«7; extra, symmetric: boolean): TMatrix[:s5
2.6.28 MatrixDyn2

Same method as Matrix2[s, just with locations instead of nodes:

Syntax: MatrixDyn2(LL1, LL2: TLocationList[:+"): TMatrix[5%

2.6.29 MatrixDynOut
Same method as MatrixOut[88), just with locations instead of nodes.

It also adds an additional parameter nearest(’yg(;n, which updates locations in LL1 and LL2 where
needed by making calls to NearestOpenDyn| 90\,

If you set MaxCost[89), it is used as a filter on the output (but it doesn't go faster).

Syntax: MatrixDynOut(filename: string; GF: TGISformat/:sh; LL1, LL2: TLocationList/w7; SL1, SL2:
TStringList[s, dist, time, cost, directdist, symmetric, routeobject, nearestopen: boolean)

2.6.30 MatrixOut
This method calculates a matrix, based upon the nodes in NL1 and NL2.

SL1 and SL2 contains strings, identifying the records. This can be as simple as the record ID or
another text.

SL1 and NL1 need to hold the same amount of items.
SL2 and NL2 need to hold the same amount of items.

Optionally SL1 and SL2 can be nil, then list index is used in the output.
If SL1 or SL2 contains all integers, the field type in the output is generated accordingly.

Dist, time, cost and directdist can be set to false/true to determine which fields should be included in
the output.
Set routeobject = true, if you want the route to be part of the output.

If symmetric is true, NL2 should be the same as NL1 and only combinations in one direction
between members in NL1 is part of the output.

If threads[9% > 1, symmetric is ignored / is always false.
If you set MaxCost[8%, it is used as a filter on the output (but it doesn't go faster).

Output files can get very big if vrogj have many items in the lists, especially if routeobject is also true.
See the notes about TGISwrite| 122,

Syntax: MatrixOut(filename: string; GF: TGISformat[:sh; NL1,NL2: TintegerList[++h; SL1,SL2:
TStringList[:sh; dist, time, cost, directdist, symmetric, routeobject: boolean)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 89

2.6.31

2.6.32

2.6.33

2.6.34

MatrixPOut

Same method as MatrixDynOut[s), just with positions instead of locations.
This means you should use the coordinate of TLocationList[:s8 items, rather than the locations.

It also adds an additional parameter offroadspeed (km/h), which allow you to include the offroad part
in the output. If speed=0, then it is skipped.

Another additional parameter is skiplinkbit which determines if the skiplinkbit from the attribute field,
is used in the spatial search.

If nearestopen is "active" for a specific element (i.e. another element is used as the starting point,
rather than the nearest), then the offroad part is skipped.

If you set MaxCost[8d), it is used as a filter on the output (but it doesn't go faster).

If the position for two elements in LL1 and LL2 is the same, then the distance etc. becomes 0, even
if offroad speed is defined.

Syntax: MatrixPOut(filename: string; GF: TGISformat[sh; LL1, LL2: TLocationList[+:%; SL1, SL2:
TStringList[:sh; dist, time, cost, directdist, symmetric, routeobject, nearestopen: boolean;
offroadspeed: double; skiplinkbit: boolean)

MaxCost

This property can be used to restrict the size of isochrones, nearest N calculations etc.

Matrix functions for writing to disk are also affected by MaxCost (MatrixOut[3}, MatrixDynOut[s€?,
MatrixPOut| 8%).

Unit is whatever is used as cost criteria: Cost, time or distance.

Default: 0
Type: TCost[sh
MaxCostExt

When calculating matrices, isochrones etc. in dynamic segmentation mode, the maximum cost
(distance / time / generic cost) of the links is used to guarantee correct results in all situations.

If this maximum cost is very high, it may make the calculation time much longer in large networks.
By setting this value, you can restrict it, with the risk slightly wrong results are returned in rare
situations.

Unit is whatever is used as cost criteria: Cost, time or distance. 5 may be a good choice for a value,
if criteria is time or distance.

Default: 0
Type: TCost[1sh
MaxSpeed

This property can be used to limit the speed of all links in the network, if you are calculating for a
vehicle that can not go as fast as is otherwise possible.

It only affects the route choice when working in Fastest[93 mode.

© 2022 RouteWare / Uffe Kousgaard

a0 RW Net 4

Default: 0

Type: TCost[s
2.6.35 Mipen

Setting thi’s_groperty allows you to control the line style of the output of these methods:
MatrixOut[88, MatrixPOut[s9), MatrixDynOut[s8), NearestNDyn|[03}, NearestNP [0,
TrafficAssignment| 1% and TrafficAssignmentDyn |08},

When you call it from the MapBasic DLL, the color is in MapInfo style (BGR), otherwise it is
ordinary windows style (RGB).

Type: TMipen|[:sH
2.6.36 Nearest

This method will locate the nearest item in NL, calculated from a node. It returns the index of the
item.

If returning -1, nothing was found.
Syntax: Nearest(node: integer; NL: TintegerList[:}): integer
2.6.37 NearestDyn

This method will locate the nearest item in LL, calculated from the location. It returns the index of the
item.

If returning -1, nothing was found.
Syntax: NearestDyn(Loc: TLocation[:s%; LL: TLocationList[h): integer
2.6.38 NearestOpen

This method will find the nearest open node, from a starting node. An open node is one where at
least one of the connected links is open for driving.

Syntax: NearestOpen(node: integer; var NearestNode,NearestLink: integer; var cost: TCost[1s5)
2.6.39 NearestOpenDyn

This method will find the nearest open link and node, from a starting location. An open node is one
where at least one of the connected links is open for driving.

Obstacles it ignores while doing so:
1) Oneway restrictions

2) Limits

3) Links being skipped

4) NoDriveThrough setting

Syntax: NearestOpenDyn(Loc: TLocation[:sB; var NearestNode, NearestLink: integer; var cost:
TCost[1sh)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 91

2.6.40

2.6.41

2.6.42

2.6.43

2.6.44

NodeCost

Returns the cost for a single node. This requires that an isochrone has been calculated previously.
Syntax: NodeCost(node: integer): TCost[st

NoDriveThrough

This property controls if the attribute[57 bit for NoDriveThrough areas should be respected in
calculations.

It is actually only respected in TRouteCalc methods, but for technical reasons it is a TCalc property.
Default: false

Type: boolean

RelativeSpeed

This property can be used to reduce the relative speed of all links in the network, if you are
calculating for a vehicle that can not go as fast as is otherwise possible.

Valid range: 0.01 to 1

Default: 1

Type: double

RouteCost

This method returns the cost of a route, according to how Cost has been setup[92),
See also RouteTime[92) and RouteLength[e1,

Syntax: RouteCost(route: TRoute[:e}): TCost[sh

RouteFind

This method will return a TRoute list to a node, if a route / isochrone has already been calculated
from another node.

2 examples with the same functionality:
TCalc.IsoCost(nodel)

cost = TCalc.NodeCost(node2)

route = TCalc.RouteFind(node?2)

cost = TRouteCalc.Route(nodel,node2)
route = TCalc.RouteFind(node2)

IsoCostl 821 method is faster if you have many calculations to do for the same nodel. But class
TRouteCalc [0} offers more fine-tuning options.

Syntax: RouteFind(node: integer): TRoute[sh

© 2022 RouteWare / Uffe Kousgaard

92

RW Net 4

2.6.45

2.6.46

2.6.47

2.6.48

2.6.49

RouteFindDyn

This method will return a TRoute list to a location, if an isochrone has already been calculated from
another location.

2 examples with almost the same functionality:

TCalc.IsoCostDyn(locationl)
cost = TCalc.RouteFindDyn(location2,route)

cost = TRouteCalc.RouteDynEXx(locationl,location2,route)

IsoCostDynl82) method is faster if you have many calculations to do for the same location1. But
class TRouteCalc[oD offers more fine-tuning options.

It returns a high number (1e38) if no route is found.

Syntax: RouteFindDyn(Loc: TLocation[:s8; var route: TRoute[:e}): TCost[s8)

RouteTime
This method returns the time (minutes) of a route, according to how Time has been setup[92),
See also RouteCost[911 and RouteLengthl 61,

Syntax: RouteTime(route: TRoute[:sh): TCost[sh

SelectClosedLinks
This method can be used for selecting from the street network.
Output is stored in BA. New selections are set and added to any previous selections in BA.

It selects all links which are closed for the current setup, according to limits.
If includeoneway is true, it will also select links where both oneway bits[5% are set (512 + 1024).

Syntax: SelectClosedLinks(BA: TBitArray; includeoneway: boolean);
SetCheapest

This sets the calculation target to be cost. At the same time it can be specified if turn restrictions
should be included.

If you have defined any negative costs (TNetwork.SetCost[62Y), it is important to set turnmode = true,
when creating the object[7$).
Even so, it is experimental, if you use negative costs in route calculations.

Syntax: SetCheapest(turncosts: boolean)

SetCost

This defines which cost array should be used in cheapest[92 route calculations.
Default: 0 as index

Syntax: SetCost(index: integer)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 93

2.6.50

2.6.51

2.6.52

2.6.53

2.6.54

2.6.55

SetFastest

This sets the calculation target to be time. At the same time it can be specified if turn restrictions
should be included.

Syntax: SetFastest(turncosts: boolean)

SetLimit

This allows you to restrict routing to links where a limit exists. See Limit[& for further details.
LimitID is from 1 to 9 and value is from O to 255.

Default is value = 0, i.e. no restriction.

Syntax: SetLimit(LimitID: integer; value: byte)

SetShortest

This sets the calculation target to be distance. At the same time it can be specified if turn restrictions
should be included.

If they are included, only restrictions (<0) are applied. Delays (>0) are ignored.
Default: SetShortest(false)

Syntax: SetShortest(turncosts: boolean)

SetSkipLinkList

You can set up a list of links that should be excluded in routing.

Default: no list

See also SetSkipNodeList/[oh.

Syntax: SetSkipLinkList(list: TBitArray [145)

SetTime

This defines which time array should be used in fastest/ 93 route calculations.
Default: 0 as index

Syntax: SetTime(index: integer)

SetTurn

This defines which turn restriction array should be used, when turncosts = true in SetCheapest[o2,

SetFastest[93 or SetShortest[93.

Default: 0 as index

Syntax: SetTurn(index: integer)

© 2022 RouteWare / Uffe Kousgaard

94

RW Net 4

2.6.56

2.6.57

2.6.58

2.6.59

2.6.60

SkipCulDeSacOptimization

This property controls if cul-de-sac optimization should be skipped during route calculations,
increasing calculation time by 25-30%.

It can be used to make sure RouteDynApproachl 07 calculations gives the same result as
IsoCostDynl 82 followed by RouteFindDyn[92 - even in rare situations.

Default: false

Type: boolean

Smartlinit

When doing short routes / small isochrones in very large networks (>2 million links), we have added
this feature, which allows the routing engine to only initialize the network as it works it way through it,

by using the spatial index for determing when new areas are visited.

It can improve performance by a factor 2-5 in such cases. The advantage disappears when length
of routes reaches app. 50 km. For very long routes, it is even a disadvantage.

If you set it and use the object in instantiating the TDrivingDirections|1:5) class, it will also use
smartinit routing.
It does so by testing if distance is below 50 km (hardcoded limit).

Default: false

Type: boolean

Starttime

This property is used for defining when a route calculation starts. Not implemented yet.

Type: TCost[1sh

SubNetSimple

This method calculates if a network has subnets. A subnet is defined as a part of the network, which
isn't connected to the rest of the network. It can typically be an island without a ferry or a similar

situation.

This is done with IgnoreOneWay [81 set to true temporarily, so one-way restrictions may in fact
make even more links in-accessible. See function SubNetEx[:8 on how to detect such situations.

It returns true if there are subnets.

See also SubNet/ % and SubNetEx|:o8,

Syntax: SubNetSimple: boolean

Threads

Set this property to decide how many threads are used when calling these methods:

IsoCostMulti [83)
IsoLinkDriveTime|[83) (*)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 95

2.6.61

2.6.62

IsoLinkServiceArea[s#) (*)

IsoPoly [85
IsoPolyFast/ 81

Matrix[8?1

Matrix2[87

MatrixDyn[88}
MatrixDyn2|s8)
MatrixDynCurblsochrone[oh

MatrixOut[83 %
MatrixDynQut| 881 (*)
MatrixPOut| 83 (¥)

Methods that involve writing a lot to disk (*), do not always benefit much from running multi-threaded.
Some fileformats are even slower in multi-threaded mode.

The setting only applies in RW Net Pro. Valid values are 1 to 256. Default is 1.
We do not recommend using higher than the "number of cores - 1".

When running with multiple threads, additional TCalc objects are created internally.
This means a much higher amount of memory is allocated. This is especially something to
be aware of with large street networks.

Progress events for these functions are disabled when threads > 1.
Type: integer
TimeFormatAsString

When set as true, time values in matrix output is generated in a human readable format, rather than
minutes.

Examples:

4m 30s

3h 23m 05s
999h 00m 02s

Max value is 999 hours.

It affects: MatrixOut[88), MatrixDynOut| 88, MatrixPOut[ed), NearestNDyn 105, NearestNP 103,
RoutePairs| 0% and RoutePairsP| 10h.

Default: false

Type: boolean

Turnmode

This read-only property returns if the object was created[791 with turnmode enabled.

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

96 RW Net 4

2.6.63 UTurnAllowed
Defines if U-turns are allowed when Turnmode = true.

False: All U-turns are banned.
True: All U-turns are allowed, unless banned through attribute[53 settings.

U-turns are always allowed on cul-de-sac[47 links.
Default: false

Type: boolean

2.6.64 Pro methods
2.6.64.1 AlphaShape

Alpha shapes is one of many ways to create isochrones around a set of points.
It requires the presence of alphashape.dIl or alphashape64.dll.

See also Isochrones - overview[18)

Syntax: AlphaShape(filename: string; GF: TGISFormat[:=%; PG: TPolyGeneration[:%; SL:
TStepList|147; Includelslands: boolean);

2.6.64.2 CenterLocationl

This method finds the center location of a network, the one which is halfway along the longest route
in the network.

Route is calculated as shortest / fastest / cheapest in the normal way.

This may not be the same as center of gravity.

Syntax: CenterLocationl: TLocation;
2.6.64.3 CenterNode

This method finds the center node of a network, the one which minimizes this expression:

> Weight(node) * distance(node, CenterNode)

Parameter nodeweights need to have as many elements as NodeCount[571 +1 and contain 0's or
positive weights.

The method is aimed at having not too many elements > 0 or it gets slow.

Syntax: CenterNode(var nodeweights: TCostArray [:s8): integer;

Example with 10 nodes with weights and the green centernode:

© 2022 RouteWare / Uffe Kousgaard

Main Classes 97

&4
@8
@1
@16
@19
(]
#10
#11 49
15
®s19

2.6.64.4 IsoCostDynApproach

This method calculates an isochrone from the location, but with a specific approach. The size of the
isochrone can be restricted by setting MaxCost/8d\.

An error will be raised if location is on a loop link. Check with LoopLink[561 function in advance.
Requires turnmode[951 = true !

Syntax: 1soCostDynApproach(Loc: TLocation[#); Approach: TApproach|:sh)
2.6.64.5 IsoCostListDynApproach

This method calculates an isochrone from the location, but with a specific approach. It stops when
all items in LL has been reached.

An error will be raised if location is on a loop link. Check with LoopLink[5 function in advance.
Requires turnmode[93) = true !

Syntax: I1soCostListDynApproach(Loc: TLocation[:s8; LL: TLocationList[:+h; Approach:
TApproach| %)

© 2022 RouteWare / Uffe Kousgaard

a8 RW Net 4

2.6.64.6 LinkCostDynApproach

Returns the cost of getting to a specific location of a link and with a specific approach.
This method can be used after a call to IsoCostDynApproach[s? method.

2 examples with the same functionality:

TCalc.lsoCostDynApproach[9M(location1,approachi)
cost = TCalc.LinkCostDynApproach(location2,approach2)

cost = TRouteCalc.RouteDynApproach|h(locationd, location2,approachi,approach2)

If locationl.link = location2.link you will have to use the TRouteCalc method.

Syntax: LinkCostDynApproach(loc: TLocation[:s%; approach: TApproach|:sh): TCost[:sh

2.6.64.7 MST

This method calculates a minimum spanning tree for the network, using Prims algorithm. Result is
stored in links as 1's if the link is part of the tree.

By default length is used as cost, but by calling SetFastest[93 or SetCheapest[e?, you can change
to another criteria.

Oneway restrictions are not taken into account, neither is limits or the SkipLinkList[93).
Performance examples:

13,500 links: 0.5 sec

200,000 links: 165 sec

See also SteinerTreel:oh for a tree limited to a subset of the nodes.

Syntax: MST(links: TBitArray [14);

Example output, subset of larger network:

© 2022 RouteWare / Uffe Kousgaard

Main Classes 99

_ Ol

2.6.64.8 RouteFindDynApproach

This method will return a TRoute list to a location, if an isochrone has already been calculated from
another location.

2 examples with the same functionality:

TCalc.IsoCostDynApproach[9M(location1,approachl)
cost = TCalc.RouteFindDynApproach(location2,approach2,route)

cost = TRouteCalc.RouteDynApproachEx| ¥(locationl,location2,approachl,approach2,route)

If locationl.link = location2.link you will have to use the TRouteCalc method.

Syntax: Rl_o%lljteFindDynApproach(loc: TLocation:s%; approach: TApproach|:sh; var route: TRoute[:sh
): TCost| 15

© 2022 RouteWare / Uffe Kousgaard

100 RW Net 4

2.6.64.9 SetSmoothing

Same functionality as here[:29, but for method DriveTimeSimple|[sd,

Syntax: SetSmoothing(passes, rounded, deviation: integer);
2.6.64.10 SteinerTree

A Steiner-Tree is similar to a minimum spanning tree, with the exception you can select which nodes
in the network you want to connect.

We are using an approximation to solve the problem.
See also MST[98! for an explanation.

Nodes parameter is the input, a list of nodes, while links is the output containing true for links that
should be included.

Syntax: SteinerTree(nodes: TintegerList/:s7; links: TBitArray [14h):;

"3

© 2022 RouteWare / Uffe Kousgaard

Main Classes 101

2.6.64.11 SubNet

This method calculates which part of a network is a subnet. A subnet is defined as a part of the
network, which isn't connected to the rest of the network. It can typically be an island without a ferry
or a similar situation.

This is done with IgnoreOneWay [81 set to true temporarily, so one-way restrictions may in fact
make even more links in-accessible. See function SubNetEx| 08 on how to detect such situations.

Similarly any limits are also temporarily set to O while doing the calculations.
IA returns the subnet ID for each link, while the method returns the number of subnets.

0 = main net
1, 2, 3... = sub nets

The main net is defined as the one with the most links.

See also SubNetLimits[:oh, SubNetEx[:o5 and SubNetSimple[ed)

Syntax: SubNet(var IA: TIntegerArray [1s%): integer

2.6.64.12 SubNetLimits

This method is the same as SubNet method, but it takes current limits[93 into account.

Syntax: SubNetLimits(var IA: TintegerArray [1s5): integer

2.6.64.13 Tree

This method allows you to calculate a tree from a single starting point, typically used for verification
of the street network.

This can be seen as a simpler version of TRouteCalc. TrafficAssignment[:o8). It only records which
links are in use and all traffic is from a single node.

Syntax: Tree(filename: string; GF: TGISformat[sh; startnode: integer; var NL: TintegerList[:4")

2.6.64.14 UnusedLinks

2.7

This method can be used for locating links which are not part of a route between any 2 nodes. This
is done using the current cost criteria.

Invalid objects are not marked in the output.

Syntax: UnusedLinks(links: TBitArray [14)

TRouteCalc

This class inherits all properties and methods from TCalc[78) and adds methods and properties
related to one-to-one route calculations, the A* algorithm is used.

In particular it adds these properties:

Algham |Makes it possible to increase speed of calculations. No further data requirements.
DuplicateLi |[Enables automatic checking of both directions of duplicate links

© 2022 RouteWare / Uffe Kousgaard

102

RW Net 4

2.7.1

2.7.2

Hierarchy [Makes it possible to increase speed of calculations, if hierarchical information is
[108) available in the attributes[s™.

SkipNodeLijAllows you to avoid passing through certain nodes in the network.

stl10h)

See also NoDriveThrough[93).

Alpha

This property allows you to speed up calculations. By using 1.0 as value you will still get the actual
best route, while increasing the value also increases the risk of getting a route that is closer to a
straight line between start and end, but not necessarily the best route.

We recommend not increasing to more than 1.3. That may improve calculation speed with a factor
10 or so: Largest improvement is seen for long routes.

Default: 1.0

See also UpdateAlphas| 63,

Type: TCost|1sh

DuplicateLinks

This property controls if there should be checked for duplicate links in the calculations.

If both the start and stop link of a route has a duplicate, then 4 route combinations are calculated

and the fastest / shortest / cheapest is chosen.
See TNetwork.FindDuplicateLinks[52) for an explanation.

Obviously, this slows down calculations since additional routes has to be calculated.

It affects these route methods:
RouteDyn

RouteDynEXx

RoutePairs

RoutePairsP

Route Matrix Methods
TrafficAssignmentDyn

It doesn't affect these route methods:
MatrixDynCurblsoChrone
MatrixDynCurbRoute

NearestNDyn

NearestNP

Route

RouteDynApproach
RouteDynApproachEx
TrafficAssignment

Default: true

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

Main Classes 103

2.7.3 NearestNDyn
This method finds the N nearest elements in LL2 for every element in LL1.

Typically LL1 has many elements, such as single addresses.
LL2 has much less elements, typically some centers (schools etc).

Routes are calculated from center to address for optimized speed of calculations. If you want the
other direction, call SwapOneWay| 6% before and after calling the function.

If maxcost[831 is set, it is used as cutoff and less than N elements may be found.
if N=0, then all elements are returned.
SL1 and SL2 can be nil or contain text identifiers for the output.

Dist, time and cost can be set to false/true to determine which fields should be included in the
output.
Set routeobject = true, if you want the route to be part of the output (slows down calculations).

Output is a GIS file with one or more of these fields:
ID1

ID2

N

Distance

Time

Cost

DirectDist

Nogk~owNE

Syntax: NearestNDyn(filename: string; GF: TGISformat/:sn; LL1, LL2: TLocationList[:«%; N: integer;
SL1, SL2: TStringListl s dist, time, cost, directdist, routeobject: boolean)

2.7.4 NearestNP

Same method as NearestNDyn[:o}, just with positions instead of locations.
This means you should use the coordinate of TLocationList[:s5 items, rather than the locations.

It also adds an additional parameter offroadspeed (km/h), which allow you to include the offroad part
in the output. If speed=0, then it is skipped.

If nearestopen is "active" for a specific element (i.e. another element is used as the starting point,
rather than the nearest), then the offroad part is skipped.

Syntax: NearestNP(filename: string; GF: TGISformat[:sh; LL1, LL2: TLocationList[+h; N: integer;
SL1, SL2: TStringList[:sh; dist, time, cost, directdist, routeobject, nearestopen: boolean;
offroadspeed: double)

2.7.5 Route
Returns the cost of a route from nodel to node2.
You can call RouteFind| ot afterwards, if you want the actual route and not just the cost.

It returns -1 if no route is found.

Syntax: Route(nodel,node2: integer): TCost[1sh

© 2022 RouteWare / Uffe Kousgaard

104

RW Net 4

2.7.6

2.7.7

2.7.8

2.7.9

RouteDyn

Returns the cost of a route from locationl to location2.
It returns -1 if no route is found.

See also RouteDynEx| 104,

Syntax: RouteDyn(loc1,loc2: TLocation[:sh): TCost[sh

RouteDynEXx
Returns the cost of a route from locationl to location2, including the actual route.
It returns -1 if no route is found.

Syntax: RouteDynEx(loc1,loc2: TLocation[:sB; var Route: TRoute|6h): TCost/58)

RoutePairs

This method calculates the route between pairs of elements in LL1 and LL2, which must have the
same amount of elements.

Input is the locations of the locationslists.

SL1 and SL2 can be nil or contain text identifiers for the output.

Dist, time and cost can be set to false/true to determine which fields should be included in the
output.

Set routeobject = true, if you want the route to be part of the output (slows down calculations).

Output is a GIS file with one or more of these fields:

1. ID1

(2. ID2)

3. Distance
4. Time

5. Cost

6. DirectDist

See also RoutePairsGroupSize[05,

Syntax: RoutePairs(filename: string; GF: TGISformat/sh; LL1,LL2: TLocationList[1% SL1,SL2:
TStringList[:s%; dist, time, cost, directdist, routeobject, nearestopen: boolean);

RoutePairsP

It is the same as RoutePairs[10h, except the input is the coordinates of the locationslists and it can
handle an offroadspeed.

RoutePairsGroupSize[:h has not been implemented for this method yet.

Syntax: RoutePairsP(filename: string; GF: TGISformat[:sh; LL1,LL2: TLocationList[:+"; SL1,SL2:
TStringList[:s; dist, time, cost, directdist, routeobject, nearestopen: boolean; offroadspeed: double);

© 2022 RouteWare / Uffe Kousgaard

Main Classes 105

2.7.10

2.7.11

2.7.12
2.7.12.1

RoutePairsGroupSize
This property can be used to control how the RoutePairs[:0% method works:
In the default state, the routes are calculated one by one.

If the value is >1, you should keep the LL1 list sorted according to location and the calculations are
done using isochrones instead.

This can mean lot faster calculations, easily a factor 10, depending upon size of groups, size of
network, geographical spread of locations etc.

A suggested value is 3-5.

If NoDriveThroughl o1l is true, it will calculate one by one, in any case.
Default: 0

Type: integer

Route Matrix methods

This is a selection of methods which do the same calculations as the similar ones in the TCalc[78)
class.

Main difference is the matrices are calculated as one route at a time, rather than through an isocost
calculation.

This makes it faster if you want to calculate a small matrix in a large network.
Especially if your points are far apart and you have a hierarchy| 61 in the data.

The methods are not multi-threaded.

RMatrix equals TCalc.Matrix| 89

RMatrix2 equals TCalc.Matrix2[8h

RMatrixDyn equals TCalc.MatrixDyn| 3
RMatrixDyn2 equals TCalc.MatrixDyn2[88
RMatrixDynOut equals TCalc.MatrixDynOut] &8
RMatrixOut equals TCalc. MatrixOut[88)
RMatrixPOut equals TCalc.MatrixPOut/8$)

Pro methods
AltRouteDyn

This method calculates alternative routes between 2 locations.

It works this way:

First route is calculated the normal way.

Now, all links making up the first route are made x % more "expensive", so they are less likely to be
chosen when next route is calculated.

Second route is calculated, which may include parts of the first route.

Now even more links gets marked.

Third route etc.

If NumOfRoutes=0, it stops when new routes equal one of those already calculated.
Otherwise it may stop sooner.

© 2022 RouteWare / Uffe Kousgaard

106

RW Net 4

2.7.12.2

2.7.12.3

2.7.12.4

Timelndex points to the timeArray which is used if you want fastest route calculation.
Set Timelndex = -1, if you want shortest route.

SmallDeviationFactor makes sure that routes almost equal do not get generated. Default value of 0.1
= 10% seems good.

Factor is the amount of percentage already used links should be made more expensive. 1.3 to 1.4
seems good values. 1.3 equals x = 30%.

TmpCostindex is the costArray, which is used for temporary route calculations.
Call SetCheapest[921 before calling AltRouteDyn.

ARL should be created in advance and contains the output.

Syntax: AltRouteDyn(loc1, loc2: TLocation[:s8; Timelndex, TmpCostindex, NumRoutes: integer;
SmallDeviationsFactor, Factor: double; ARL: TAltRouteList[)

Bridges

Detects if removing a link from the network, breaks up the network in separate subnets. The
problematic links are marked with 1 in the IA array.

CulDeSac links are not marked, since testing for CulDeSac can easily be done with calling
CulDeSac/[4 for all links.

Links with oneway restrictions are not marked, use SubNetEx instead.

The function returns the number of elements set in the array.

See also SubNetEx/1oh

Syntax: Bridges(var IA: TintegerArray[s8): integer
CulDeSacCurb

Detects which links can not be used in curb approach mode (TTSPcurbl}), when U-turns are not
allowed. The problematic links are marked with 1 in the IA array.

UTurnAllowed [981 and IgnoreOneWay [81) should be left to false, to find all problems.

Simple CulDeSac links are not marked, since testing for CulDeSac can easily be done with calling

CulDeSac/[4M for all links.

The function returns the number of elements set in the array.

The difference between the two functions, is this one also locates links where oneway restrictions
are the cause of the problems.

Syntax: CulDeSacCurb(var IA: TintegerArray [1=): integer
Hierarchy

Set this property to true, if you want to enable hierarchical routing.
You should also have called SetHierarchyl evel[1®,

If you set it and use the object in instantiating the TDrivingDirections[:8 class, it will also use
hierarchical routing.

It does so by first trying with hierarchy enabled and if no route was found, it will try again with
hierarchy disabled.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 107

2.7.12.5

2.7.12.6

2.7.12.7

2.7.12.8

Default: false

Type: boolean

MatrixDynCurblsochrone

Same as MatrixDyn[88), but including curb approach, for use with TTSPcurb/[,

This version is fastest if you have more than ~10 items in LL.
See also MatrixDynCurbRoute 107,

Requires turnmode| 981 = true !
Syntax: MatrixDynCurblsochrone(LL: TLocationList[1+%; extra: boolean): TCurbMatrix:s5
MatrixDynCurbRoute

Same as MatrixDyn[88), but including curb approach, for use with TTSPcurb/[xh,

This version is fastest if you have less than ~10 items in LL.
See also MatrixDynCurblsochrone[:oh.

Syntax: MatrixDynCurbRoute(LL: TLocationList[:"; extra: boolean): TCurbMatrix| 55
RoadNameTest

This function tests the roadname as part of the driving directions. The theory is, if a road hame
occur more than once on a route, it may be an error and the links between the 2 occurences might
have the wrong name in the database. An example:

Link 1, 2, 3: Main Street
Link 4, 5: Old Road
Link 6, 7: Main Street

Here link 4 and 5 should probably have had the name Main Street as well. The function will report
such instances and then leave it to the user to decide, if any edits should be performed.

RoadFilelD defines the database with road names to use with the function and NumOfRoutes defines
how many random routes to calculate as part of the test.

The fields in the generated GIS file are linkiD, count of links that should be changed in the same
way (2 in the example abowve), present roadname and suggested roadname. Generally, a low
number of links to be changed, indicates a higher likelihood, that it is a required change. Using a
filter of count<20 is a good idea, before viewing the output. Roundabouts are always skipped in the
output.

Syntax: RoadNameTest(filename: string; GF: TGISformat/:s%; RoadFilelD, NumOfRoutes: integer);
RouteDynApproach

Returns the cost of a route from locationl to location2, but with specific approach at both locations.

See also RouteDynApproachEx[o8,

Syntaxl:_gouteDynApproach(Ioc1,Ioc2: TLocation[:s8; Approachl,Approach2: TApproach|:sh):
TCost|1s

© 2022 RouteWare / Uffe Kousgaard

108

RW Net 4

2.7.12.9 RouteDynApproachEx

Returns the cost of a route from locationl to location2, but with specific approach at both locations.
Actual route is also included in the output.

Syntax: RouteDynApproachEx(loc1,loc2: TLocation[:s5; Approachil,Approach2: TApproach[:s®; var
Route: TRoute[eh): TCost[sh

2.7.12.10 SetHierarchyLevel

Sets the 4 hierarchy parameters for use in hierarchical routing. Values should be expressed in km.

Input requirement: h2 >= h3 >= h4 >= h5 >= 0.
By default all parameters are set to infinite, meaning no hierarchy is applied.

We have executed tests with TomTom (net2class field) and HERE (func_class field) databases and
recommend these values:

| Km
|HERE 145, 90, 40, 7
[TomTom 80, 40, 20, 10

HERE tests were executed on UK data with a large humber of random routes. Compared to not
using a hierarchy, calculations were 11 times faster.

For short routes (<50 km) there is only little difference between using a hierarchy or not, while
calculation of longer routes (>400 km) in the UK may be as much as 20-40 times faster (HERE).

We have not had time to test TomTom so accuractely yet, so the values above are just a good
starting point.

In any case your dataset should have hierarchy data included and prepared in the corresponding
bits in the attribute field[5™,

Syntax: SetHierarchyLevel(h2, h3, h4, h5: double)

2.7.12.11 SetSkipNodeList

You can set up a list of nodes that should be excluded in routing.
Default: no list
See also SetSkipLinkList| 93,

Syntax: SetSkipNodelList(list: TBitArray [1})

2.7.12.12 SubNetEx

Detects if a route between any 2 nodes can only be found when going in one of the directions. The
links with the problematic one-way restrictions are identified and marked with 1 in the 1A array. If
any links are marked, it means the whole network isn't strongly connected.

The function returns the number of elements set in the array.

See also SubNet[0% and Bridges[:oh

Syntax: SubNetEx(var IA: TintegerArray [1=8): integer

© 2022 RouteWare / Uffe Kousgaard

Main Classes 109

2.7.12.13 TrafficAssignment

This method is for assigning traffic to a street network.

Key input is TL, which holds traffic as volume between two pairs of coordinates. All traffic is
allocated to the street network, using the all-or-nothing principle. For each link it keeps track of the
total volume in both directions.

—_— ks
The map shows traffic from the red dot to all the blue dots. Width of line corresponds to volume.

Errors is used for keeping track of records within TL for which no route could be calculated. If
Errors is unassigned, no records are marked.

Output contains these fields:

1. LinkID

2. Volume in forward direction
3. Volume in reverse direction

See also TrafficAssignmentDyn [10%)

Syntax: TrafficAssignment(filename: string; GF: TGISformat[sh; TL: TTrafficList[®; var Errors:
TintegerList/ 14h)

2.7.12.14 TrafficAssignmentDyn

This is the same method as TrafficAssignment/:o%, but it uses dynamic segmentation which means
volumes are assigned to partial links and locations are used internally, instead of nodes.

Output contains these fields:
Link ID

Start percent

End percent

Volume in forward direction
Volume in reverse direction

agrwNPE

Syntax: TrafficAssignmentDyn(filename: string; GF: TGISformat[=h; TL: TTrafficList[®; var Errors:
TintegerList/ 14h)

© 2022 RouteWare / Uffe Kousgaard

110

RW Net 4

2.8

TDrivingDirections

This class can be used for creating driving directions (turn left/right etc), but also simpler setups
aimed at just mapping. Output goes to a TGISwrite[:2h instance.

The 4 main methods:
Route 1%, RouteList[::3, RouteDyn[1% and RouteListDyn[.

Route calculation properties

Sortedindex/ 4 allows you to visit the location in a different order than natural. Typically as a result
from TTSP[%/ TTSPcurbl 4 calculations.

RoundTrip[115 should be set, so it matches TTSP.mode|:¢} if used in combination with TTSP[1:5) /
TTSPcurb/ .

OffRoadSpeed| 5 can be used with RouteDyn and RouteListDyn, when coordinates are present in
the LocationList.

SidelnArray [1% and SideOutArray[% can be used to define approach, when used in combination
with TTSPcurb| 1.
They can also be populated by calling CalcSidelnOutArray[::1), if sequence is known.

If underlying TRouteCalc.DuplicateLinks[0 is set, SidelnArray and SideOutArray is ignored.

Output properties

The key property controlling the kind of output is ConcatenationMode [11h.

These 7 properties control if each field should exist in the output or not:
Costl 1}, Dist[1:%, Time[5, Speed[5 and DirectDist/xh,
TotalCost| 1%, TotalDist[:}) and TotalTime[5

DirectDist, Dist and TotalDist are always possible, while Cost, Speed and Time require that the
parent TRouteCalc [o1 is set up correctly (see SetTime[93) and SetCost[92).

DirectDist, Speed, cost and total cost are disabled by default. The rest are enabled.

These 3 properties control a possible time stamp field in the output:
StartTime 1%, StopTime[1:5 and TimeStampFormat/ 5.

RoadFilelD[+ is used for defining which road names should be used.
VialList[1:8 is for including a textual description of the locations / nodes.
Driving directions properties

These properties are only relevant for mode cmDrivingDirections|[s5:

POI[1h
RoundAboutCounting[:%
SharpTurn[+5
TurnText/+:H

© 2022 RouteWare / Uffe Kousgaard

Main Classes 111

2.8.1

2.8.2

2.8.3

2.8.4

2.8.5

2.8.6

Create

When creating an instance of TDrivingDirections, it is required to specify a TRouteCalc instance.
Syntax: Create(Calc: TRouteCalc IE'?I);

CalcDirectDist

This property contains the direct length of a route after calling RouteDyn|[::31/ RouteListDyn[5.
Unit is km or miles, according to DistanceUnit[112

Type: TCost1sh
CalcSidelnOutArray

This method is for preparing SidelnArray 1 and SideOutArray [} with optimum values (avoiding U-
turns as much as possible), when the elements in LL is already in the correct sequence.

It will test all possible combinations, so calculation time increases if LL has many elements or the
elements are far apart.

As an example 100 locations takes 3 second, while 500 locations take 13 secs on the sample street
network.

It should be used before calling RouteListDyn 3.

Syntax: CalcSidelnOutArray(LL: TLocationList[1:h)

Only available in the Pro version.

ConcatenationMode

This key property controls the kind of output performed when calling one of the methods.

Default: cmDrivingDirections

Type: TConcatenationMode| s

Cost

This property controls if cost should be part of the output.
Default: false

Type: boolean

DirectDist

This property controls if directdist should be part of the output. Format of field is determined by
DistanceUnit[1:% and DecimalsDist] 8.

Default: false

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

112

RW Net 4

2.8.7

2.8.8

2.8.9

2.8.10

2.8.11

Dist

This property controls if dist should be part of the output. Format of field is determined by
DistanceUnit[1:% and DecimalsDist[83,

Default: true

Type: boolean

DistanceUnit

When generating output, you can use this property to use miles & mph instead of km & km/h.
Default: duKm

Type: TDistanceUnit[:sh

OffRoadSpeed

This property can be used to define the speed while moving from the exact coordinates (which are
off road) to the nearest link.

It can only be used in combination with method RouteListDyn[:%. The LL parameter need to have
both coordinates and locations defined internally. This is done by adding coordinates first and then
use TSpatialSearch.Nearestl ocationSimpleList| 76).

If itis 0 and ConcatenationMode = cmCompactOffRoad, it is the same as using cmCompact.
A typical value would be 5 km/h, for walking speed.

Default: 0

Type: TCost[1sh

POI

It is possible to define a list of POI (Points-Of-Interest), that you want included in the output. For
each link part of the result, it is checked if it contains any POI.

POI may be roadside signs, petrol stations etc. They are not possible during roundabouts.

Default: nil

Type: TPOIList[1h

RoadFilelD

This property is used to describe which roadnamel[59 file is used for the driving directions.
If ConcatenationMode = cmDrivingDirections, it needs to be set.

If ConcatenationMode = cmSeparate, it can be set and shall then be included in the output.
For other modes, the roadname is not part of the output.

Default: 0

Type: integer

© 2022 RouteWare / Uffe Kousgaard

Main Classes 113

2.8.12 RoundAboutCounting
This property controls how exit links are counted as part of driving directions in roundabouts.

False: Only exit links are counted
True: All links are counted

Default: false
Type: boolean
2.8.13 RoundTrip
This property controls if the output should be generated as a round trip (A-B-C-A) or not (A-B-C).

If you call method Route[15 or RouteDyn| 5 (2 points only), you may like to set it to false first.

Default: true
Type: boolean
2.8.14 Route
Same method as RouteList[::3), just with 2 nodes and no need to setup a list of nodes.
Syntax: Route(output: TGISwrite[2% nodel,node2: integer)
2.8.15 RouteDyn
Same method as RouteListDyn[::}, just with 2 locations and no need to setup a list of locations.
Syntax: RouteDyn(output: TGISwrite[:2%; loc1,loc2: TLocation|[:s8)
2.8.16 RouteList
This method calculates a route between all the nodes in NL and writes the result to output.
Syntax: RouteList(output: TGISwrite[:22; NL: TintegerList/ 1)
2.8.17 RouteListDyn
This method calculates a route between all the locations in LL and writes the result to output.
See also OffRoadSpeed| .
Syntax: RouteListDyn(output: TGISwrite[:2%; LL: TLocationList[%)
2.8.18 SharpTurn
If this property is >0, it is possible to trigger a turn description in the output even when the street
name doesn't change, but the road makes a clear turn at an intersection. Just define how sharp the
turn should be. Suggested value is 60-75 degrees. This only applies to sharp turns at intersections -

not halfway down a link.

Default: 0

© 2022 RouteWare / Uffe Kousgaard

114

RW Net 4

2.8.19

2.8.20

2.8.21

2.8.22

2.8.23

Type: Integer
SidelnArray

Set this property in combination with TTSPcurb/[:+1) optimization, to control how locations are
approached (in-bound).

Default: nil

Type: TApproachArray [1sh

Only available in the Pro version.
SideOutArray

Set this property in combination with TTSPcurb[:4h optimization, to control how locations are
approached (out-bound).

Default: nil

Type: TApproachArray [158

Only available in the Pro version.
SortedIndex

This property controls the order of the nodes / locations in the output. This is typically the output
from TTSP.SortedIndex b,

Alternatively you can setup your own TintegerArray. It should be zero-indexed and contain all values
from 0 to Count-1 only once, starting with 0.

Default: nil
Type: TintegerArray [:h
Speed

This property controls if speed should be part of the output. Format of field is determined by
DistanceUnit[115,

Default: false

Type: boolean

StartTime

This property defines when time stamps start in the output and is defined as a fraction of a day.
Default: 0

Type: double[:h

© 2022 RouteWare / Uffe Kousgaard

Main Classes 115

2.8.24

2.8.25

2.8.26

2.8.27

2.8.28

2.8.29

StopTime

This property defines when time stamps stops in the output and is defined as a fraction of a day. If
StartTime |14 <> 0, it is ignored.

Default: 0
Type: double[:sh
Time

This property controls if time should be part of the output. Format of field is determined by
DecimalsTime|8sd,

Default: true
Type: boolean
TimeStampFormat

This prop(’eg% controls the format for time stamp in the output. Works in connection with
StartTime[35 and StopTime/[:4.

Default: tfSkip

Type: TTimeStampFormat/:sh

TotalCost

This property controls if total cost should be part of the output.
Default: false

Type: boolean

TotalDist

This property controls if total dist should be part of the output. Format of field is determined by

DistanceUnit[1:% and DecimalsDist/ 83\,

Default: true
Type: boolean
TotalTime

This property controls if total time should be part of the output. Format of field is determined by

DecimalsTime[8®,

Default: true

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

116

RW Net 4

2.8.30

2.8.31

2.9

TurnText

If this property is defined an additional field is added to the output with textual description of the
turns instead of just the values from O to 379.

Default: nil

Type: TTurnTexts/sh

ViaList

This is for including textual descriptions and / or a fixed service time for each of the locations.

Default: nil

Type: TViaArray [15

TVoronoi

This class is used for generating Voronoi polygons and Delaunay triangulations. A detailed
description of these can be seen in Wikipedia: Voronoi & Triangulation

The primary target is calculation of service areas and drivetime isochrones.

The sample application shows how to do it for isochrones and service areas. The other modes are
done in a similar fashion.

You can also use the class independently from the routing functions, if you create and populate the

PolyGeneration parameter on your own.

Properties relevant for each mode:

[Mode GlSwritgPolyGenl Slope |Zfieldna] Doughn 19 |Include]include] StepList{Smoothi

ul | eration 12% melA | utluh Holes |Islands| [ng/2h
,E(ﬁ 119 119

vmTriangulaf X X X X

lionLine

vmTriangulaf X X X X

lionSimple

vmSimpleLin] X X

le

\vmSimple X X

vmisochrond X X X X X X X

vmServiceArl X X X X X

lea

GISwrite, PolyGeneration and StepList need to be set.

Slope, Zfieldname, Doughnut, Includelslands and IncludeHoles have default values and can be left

unchanged.

Example of drivetime isochrone:

© 2022 RouteWare / Uffe Kousgaard

2.9.1 "Doughnut
This property controls if output is generated as doughnut when mode = vmisoChrone.

Example: If StepList/:2h holds values 1, 2 and 3, you will get these 3 records in the output,
depending upon the value:

false true
0-1 0-1
0-2 1-2
0-3 2-3

Non-doughnut polygons (false) are overlapping.
Doughnut polygons (true) are not overlapping.

If true, IncludeHoles can not be false at the same time.
Default: true
Type: boolean
2.9.2 Execute
This is the main method for starting calculations.

Syntax: execute: integer

© 2022 RouteWare / Uffe Kousgaard

Main Classes 119

2.9.3

2.9.4

2.9.5

2.9.6

GlISwriter

This is a reference to a TGISwriter instance, for holding output from the calculations.
Default: nil

Type: TGISwriter[2h

ID

This property can be used in vmServiceArea mode to have an ID field, rather than the default
0,1,2... values.

The list need to contain as many elements as you have Startpoints in PolyGeneration |5,
Default: nil

Type: TStringList/ 10

IncludeHoles

This property controls if holes are allowed in the output, when mode[:28 = vmlsoChrone or
vmServiceArea.

These two maps, show the same 1 km isochrone with IncludeHoles = true and false:

a L,
i!lljli Z

Default: true

Type: boolean

Includelslands

This property controls if islands are included in the output, when mode [:28 = vmlsoChrone or
vmServiceArea.

Itis an island if there is no center inside it.

Default: true

© 2022 RouteWare / Uffe Kousgaard

120

RW Net 4

2.9.7

2.9.8

2.9.9

2.9.10

Type: boolean

MilesOutput

If you set this to true, cost values in PolyGeneration[9 and StepList[:-1 are assumed to be km.
Output then gets written as Miles, dividing by 1.609.

Default: false

Type: boolean

Mode

This key property controls the kind of calculation and output performed when calling execute[::5,
Default: vmlsoChrone

Type: TVoronoiMode1s5

PolyGeneration

This holds the main data used for the calculations.

Default: nil

Type: TPolyGeneration[+)

SetSmoothing

This method allows you to smooth the output when mode[:28) = vmisochrone. Call it before calling
Execute[1.

It is worth noting that the generated polygons do not get any more accurate, but may look more
"visually" attractive on a map.

The number of nodes in the generated polygons will increase significantly, so use the function with
care.

Recommendations:

e Call it with only 1 step[=h. With >= 2 steps there is a risk of unwanted overlaps.
e Leave doughnut/ B = false or you risk gaps between rings.

Example without and with settings (5,3,5):

© 2022 RouteWare / Uffe Kousgaard

Main Classes 121

29.11

2.9.12

2.9.13

B2 Voronoi_DriveTime_no_smooth Map IEI@ B Voronoi_DriveTime_smooth Map o || =] 2

Parameters and valid values:
Passes (1..5) defines how smoothed the output gets. A typical value is 3-4.

Rounded (3..6) defines how close the output fits the original input. 3 means any sharp angles almost
disappear, while 5-6 for instance maintains the original look closer.

Deviation (0..15) allows you to remove some of the added nodes again to keep the total number of
nodes lower without changing the look of the generated polygon too much.

Deviation is expressed in degrees. 1 degree will remove very few nodes, while 4-5 degrees will be
good for most applications.

(0,0,0) is default value and means no smoothing at all. Use it for resetting.

Syntax: SetSmoothing(passes, rounded, deviation: integer; coord: TCoordinateUnit[:s%);

Slope

This is the slope of the triangulations. X, Y and Z (Cost) need to be in the same unit for it to work.
Default: false (which means not calculated in output)

Type: boolean

StepList

This property is used to define the steps used in mode vmisoChrone. See Doughnut[::3) too.
Default: nil

Type: TStepList/ 14N

Zfieldname

Change this property if you want a different fieldname for the Z (cost) value. This is only relevant for
the triangulation modes.

Default: "Cost"

© 2022 RouteWare / Uffe Kousgaard

122 RW Net 4
Type: string
210 TGISwriter
This class is used for generating output from calculations. Typically as a GIS file with coordinates,
but CSV and DBF files are also possible.
It is mostly used internally, but made available to users too. There is less error checking in this
class, so you are to a higher degree responsible for what you are doing, if you use it directly. The
sample uses it several times.
This table lists the 13 classes, which all has the same interface:
Contains Style File components |2 GB limitlf] Codepage
geographic data] information
TGISwriterArr X Unicode
ay
TGISwriterCS csv Ansi
\V/
TGISwriterDB DBF X Ansi
F
TGISwriterEF X X TAB, MAP, ID, DAT X Ansi
AL
TGISwriterEF X X TAB, MAP, ID, DAT Ansi / UTF8/
ALX UTF16
TGISwriterGe X GEOJSON X (if string) UTF8
0JSON
TGISwriterG X XML, XSD UTF8
ML2
TGISwriterGP X GPX UTF8
X
TGISwriterKM X KML UTF8
L2
TGl SwriterMH X X TAB, MAP, ID, DAT X Ansi
AL
TGISwriterMI X X MIF, MID Ansi
F
TGISwriterMI X X MIF, MID UTF8
F8
TGISwriterMI X X TAB, MAP, ID, DAT X Ansi
TAB
TGISwriterSH X SHP, SHX, DBF, X Ansi
P PRJ, CPG
Despite most of the file formats can hold mixed object types[sh (SHP being the exception), we only
support using a single object type.
Array

This is not file based opposed to the other formats. Not suited for very large datasets or you may hit
an out-of-memory error.

Ccsv

This always uses , as field delimiter, no matter regional settings.
This always uses . as decimal point, no matter regional settings.
First line in the file contains the field names.

© 2022 RouteWare / Uffe Kousgaard

Main Classes 123

DBF
Stores codepage information in byte 29 in the header. This is standard, but not all software reads
the information.

EFAL

This uses the EFAL library for writing TAB files.
EFAL can be downloaded from Precisely website.
Works with at least version 17 and 19.

Call TGISWriter.EFAL_Load(path) to load the library.

EFALX
The same as EFAL, except it writes NativeX format, readable with Maplnfo 64-bit.

GeoJSON
If you don't specify a filename for output, the content is stored in a string property called GeoJSON
instead.

GML2
2.1.2 format.

GPX
This only allows points and lines.
You should only use GPX if your coordinate system is already lat/long, WGS84.

KML2
2.2 format.
You should only use KML if your coordinate system is already lat/long, WGS84.

MFAL
Requires MIMFAL1500.DLL or MIMFAL1500 64.DLL on the path.
The generated table includes a spatial index and makes it slower to write than MITAB.

MIF
Maplnfo-Interchange-File format

MIF8
The new UTF-8 formatted MIF file for Maplnfo 15.2 (64-bit) and up.

MITAB

Requires MITAB.DLL or MITAB64.DLL on the path.

The generated table is generated without a spatial index. Pack the table in Maplnfo to add this.
It can not generate NativeX tables.

SHP
CPG file is a simple text file with the codepage number. ArcGIS can read this information.

2.10.1 AddField
Call this method to add fields after creating the header[A,
Syntax: AddField(Fieldname: string; Field: TGISField[5%, Width, decimals: byte)
SHP / DBF do not support field names with more than 10 characters.

Width should be specified for fChar and fDecimal.

© 2022 RouteWare / Uffe Kousgaard

124

RW Net 4

2.10.2

2.10.21

Width is a maximum of 254 for fChar in DBF, EFAL, MIF, SHP and MITAB.
For GeoJSON, KML and GML there is no limit and width is ignored.

Decimals should be specified for fDecimal.
MITAB do not support gfinté4 as field.
Adding objects

There are 5 ways to add objects:

o AddPoint/zh

AddPoint2[2

AddLine[+H

AddLine2[25

AddObiject[:2 followed by AddSection[:25 / AddSection2[:28

In all methods the attributes for the object is added as a comma-delimited string.

Always use , as delimiter.
Always use . as decimal point.
Char fields with " inside, needs to have it escaped with ™.

Number of elements in the string must match the number of fields, except for CSV and MIF where
the content is written directly to the file.

When using gfChar fields, use Unicode and " around the text.

When using gfDate fields, use this format: YYYYMMDD

When using gfLogical fields, use this format for true: "T", "t*, "Y", "y" or 1.

When using gfTime fields, use this format: HHMMSSsss (where sss = miillisec, required !)
When using gfDateTime fields, use this format: YYYYMMDDHHMMSSsss (where sss = millisec,
required !)

For SHP/DBF files, gfTime and gfDateTime are stored as text.
For TAB files, use of gfTime or gfDateTime means a version 9.00 file is generated.

Example:
A dataset consists of 9 fields, one of each type:
gfChar, gflnteger, gfSmallint, gfDecimal, gfFloat, gfDate, gfLogical, gfTime, gfDateTime

Attribute string:
"test_text",1234567,123,123.45,123.45,19991231,1,123456000,19991231123456000

19991231123456000 = 31st of Dec 1999, 12:34:56.000
AddPoint

This adds a single point to the dataset.

Syntax: AddPoint(X, Y: double; Attrib: string)

© 2022 RouteWare / Uffe Kousgaard

Main Classes 125

2.10.2.2

2.10.2.3

2.10.2.4

2.10.2.5

2.10.2.6

AddPoint2

This adds a single point to the dataset.

Syntax: AddPoint2(P: TFloatPoint[:sh; Attrib: string)

AddLine

This adds a simple line to the dataset.

Syntax: AddLine(X1, Y1, X2, Y2: double; Attrib: string)
AddLine2

This adds a simple line to the dataset.

Syntax: AddLine2(P1, P2: TFloatPoint[:sh; Attrib: string)
AddObiject

This adds the first part of a polyline / region object to the dataset.
Syntax: AddObject(NumParts: integer; MultiPolygon: boolean; Attrib: string)

After calling this method you should call AddSection[+?% or AddSection2[28) as many times as stated
in NumParts parameter.

If NumParts is 0, you will get an ungeocoded object in the dataset (works with point objects too).
This is valid for all the formats, but we have seen some software not being able to deal correctly with
SHP files with ungeocoded objects.

If you write to region output, have multiple outer rings and use GeoJSON, set MultiPolygon to true.
For other situations, value do not maiter.

NumParts can not be higher than 32000 for MIF and TAB formats.
AddSection

Call this method to add the actual coordinates in SegList:

Syntax: AddSection(Index: integer; var SegList: TFloatPointArrayEx|:sh)

For polyline datasets, the index parameter has no effect and you can just set it to 0.

For region / polygon objects it is important to store information about outer / inner rings (holes)
correctly and different file formats has different requirements:

GML, KML, MITAB

Direction of coordinates: No requirements

Should be stored as first 1 outer and then N inner polygons.

This can be followed by further outer/inner sequences.

Index should be 0, 1, 2, 3 Change sign, if it is an outer polygon.

SHP

Direction of coordinates for outer polygons: Clockwise.
Direction of coordinates for inner polygons: Anti-clockwise.
Order of polygons and index parameter doesn't matter.

© 2022 RouteWare / Uffe Kousgaard

126 RW Net 4

MIF and Array
No requirements

Common set of rules for all file formats

Direction of coordinates for outer polygons: Clockwise.
Direction of coordinates for inner polygons: Anti-clockwise.
Should be stored as first 1 outer and then N inner polygons.
This can be followed by further outer/inner sequences.

Index should be 0, 1, 2, 3 Change sign, if it is an outer polygon.
First and last coordinate should be the same for polygons or an error is raised.

2.10.2.7 AddSection2

Call this method to add a simple line object:

Syntax: AddSection2(Index: integer; X1, Y1, X2, Y2: double)
2.10.3 Brush

This property applies to regions in TAB / MIF output.

Default: BrushDefault[55

Type: TMIBrushl s
2.10.4 Close

Call this method to close the file, when you are done writing.
2.10.5 Codepage

This property describes the codepage used, when MIF, TAB, SHP, DBF and CSV files are
generated.

EFALx, KML and GML always uses UTF-8.
Array format uses native Unicode.
If you use MIF as format and set codepage = 65001 (UTF-8), it is the same as choosing MIF8 as
format.
Default: System default codepage.
Type: TCodePage/ =}
2.10.6 CompactMIF

This property describes if MIF files should be written in a compact form, without any object drawing
styles (Brushl 2, Pen[:2h or Symboll:2h).

Default: False (meaning style is included by default).

Type: boolean

© 2022 RouteWare / Uffe Kousgaard

Main Classes 127

2.10.7 Coordsys
This property is used when writing MIF and TAB files.
Default: CoordSys Earth Projection 1, 104 (Lat/Long, WGS84).
Type: String

2.10.8 Drop
This method will close and delete any generated files.

2.10.9 EFAL_Supported
This function returns true, if writing to TAB through EFAL is supported. This means if the EFAL
library has been loaded.
Call EFAL_load() first with the path to the folder with EFAL.DLL.
Type: boolean

2.10.10 EPSG
The EPSG property should be set if you write to GML or GeoJSON.
Default: 4326 (Lat/Long, WGS84).
Type: Integer[:sh

2.10.11 Filename
Fill in this property for all file types, except Array format.
Type: String

2.10.12 FilelsFull

This read-only property returns true, if the file has reached 2 GB in size and you should not add
more records.

For all other formats but SHP and TAB it always returns false.
Type: boolean
2.10.13 GeoJSON
When writing to GeoJSON format, this string contains the output.
Type: string
2.10.14 GlSarray
When writing to array format, this object contains the output.
You should create the (empty) object first and then assign it to the TGA property.

Type: TGISarray[125

© 2022 RouteWare / Uffe Kousgaard

128 RW Net 4

2.10.15 GreatCircleDist
This property should be set if your output is lat/long coordinates and you want to add additional
nodes for every X km, so that the output is shown in your GIS application as great circles between
start and end. A typical value could be 500 km, so this is only for very large objects.
Itis the users responsibility only to use it with lat/long data or honsense output may be generated.
Default value is 0.
Type: double[:sh

2.10.16 MITAB_Supported

This function returns true, if writing to TAB through MITAB is supported. This means if the library
can find the relevant mitab.dll or mitab64.dll, depending upon the platform.

Type: boolean
2.10.17 OptimizePLinesSections
This property describes if consecutive matching polyline segment should be joined before output.
Default: False.
Type: boolean
2.10.18 Pen
This property applies to polylines and regions in TAB / MIF output.
Default: PenDefault/ 59
Type: TMIPen[:sh
2.10.19 PRJ
This property is used when writing the PRJ file in a SHP file collection.
Default:
GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137,298.257
223563]], PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]
(Lat/Long, WGS84).
Type: String
2.10.20 StartHeader
Call this method when you are ready to create a new file.
As a minimum these properties should have been set in advance:
Array: TGA[:H

CSV, DBF, KML2: Filename[:zh
GML2: Filename[2h, EPSG[h

© 2022 RouteWare / Uffe Kousgaard

Main Classes 129

EFAL, MIF, MITAB: Filename[:2%, Coordsys|:2h
SHP: Filename[:2h, PRI [0

Syntax: StartHeader(NumFields: integer; ObjectTypes: TObjectTypes|:sd)

After calling this method you should call AddField[:2 as many times as stated in NumFields
parameter.

2.10.21 Symbol

This property applies to style of points in TAB / MIF output.
Default: SymbolDefault[1h

Type: TMISymbol[:sh

2.10.22 WrittenRecords

2.11

2111

2.11.2

2.11.3

2.11.3.1

This read-only property keeps track of how many records has been written, since calling
StartHeader | 125,

If no records has been written after a process, you can safely call method Drop[:2h to delete the
empty files.

Type: integer[1sh
TGlSarray

This class holds output information from TGISwriteArray.
The sample application shows how to iterate through the whole data structure.
oT

Information about the object type in the array.

Type: TObjectTypes[:sh

MBR

Minimum bounding rectangle for the whole array.
Type: TFloatRect/ A

Field

This is a list of fields in the array.

Field: array of TFieldinfo[:H

TFieldInfo

TFieldlnfo = record
Fi el dType: TG SFi el d[h
Wdth, decinals: byte
Name: string

end

© 2022 RouteWare / Uffe Kousgaard

130 RW Net 4

2.11.4 Rec
This is the actual data in the TGISarray
Rec: array of TRec/[b
2.11.4.1 TRec
This is each record in the TGISarray:
TRec = record
Attr: array of Variant (array of Ohject in .NET version)

Coord: array of TFI oat Poi nt Array[sh
end

Attr is the attribute information for the object. Length of array is the same as that of Field[:25.

Coord is the lists of coordinates making up the object. Multiple lists are required for regions with
holes for instance. See AddSection|[2% for details.

2.11.5 RecCount

The number of records in the array. Rec|% may have room for more records, since it is extended
in size in steps.

Type: Integer[1sh
2.11.6 Clear

Call this method to clear all memory allocated.

© 2022 RouteWare / Uffe Kousgaard

Part |l

Optimization classes

132

RW Net 4

3.1

3.1.1

3.1.2

3.1.3

Optimization classes
Optimization classes are not part of all levels:

RW Net Standard & Pro:

TTSP[3H

RW Net Pro

TOptimizer| 15
TTSPcurb/ 1

TOptimizer
This class holds various optimization methods:

e Cluster1[:®
This is when customers should be grouped into clusters of a uniform load. Minimizing geometric size
of clusters.

e Cluster2[
This is when customers should be grouped into a number of clusters. Minimizing total distance
between cluster center and customers.

e Cluster3[H
This is when customers should be grouped into a number of clusters. Minimizing the maximum
distance between cluster center and customers (minimax strategy).

e District[h

This is when customers should be assigned to existing centers with a capacity. Minimizing distance
between centers and customers.

See also TCalc.CenterNode[981 to locate center of a single cluster.

Assignment

This property is read-only and holds the result of a calculation.
Property Assignment: TIntegerArray 15y,

Capacity

This describes capacity of each center.

Property Capacity: TCostArray [s%;

Center

This property is read-only and holds the result of a calculation.

Property Center: TIntegerArray[sh;

© 2022 RouteWare / Uffe Kousgaard

Optimization classes 133

3.1.4 Clusterl

This function solves the problem of clustering customers (with demands|1s%), so load[::5 within the
cluster is lower than sCapacity and geometric size of cluster is minimized.

Cost is defined through a matrix/ 3%, which can be calculated B/_g Calc.Matrix[A,
TCalc.MatrixDyn[#3), TNetwork.Matrix| 58, TNetwork.MatrixDyn[58 or on your own.

Demand should be a much smaller number than sCapacity. Otherwise the algorithm isn't very good
at finding a solution.

If Demand parameter is nil (not set), the algorithm assumes 1 for all customers. See also Swap/::8.

The function returns number of clusters. Property Center[:sh holds information about which
customer is the center of the cluster.

Property Dimension
Demand No of customers
Matrix No of customers x customers

No of customers
No of clusters
No of clusters

Assignment (output)
Center (output)
Load (output)

Sample calculation time (demand = 1 for all customers):

Customers |Clustersize No of clusters |Calculation time (msec)
100 10 10 ~0

1000 100 10 31

1000 10 100 250

10000 1000 10 2500

10000 100 100 22219 (22 sec)

10000 10 1000 219656 (~ 4 minutes)

With 50000 customers the matrix has reached a size of 10 GB - to give an indication of the largest

instances that can be handled.

On win32 the limit is appr. 25000 customers.

Syntax: Cluster1(sCapacity: TCost): integer;

This is an example with 1000 customers and 10 clusters. Clusters are here highlighted as polygons:

© 2022 RouteWare / Uffe Kousgaard

3.1.5 Cluster2

This function solves the problem of clustering customers (with weights defined through demands|:s5
property), so total distance between cluster center and customers is minimized.

Cost is defined through a matrix/ 13, which can be calculated bﬁ/_g\ Calc.Matrix[A,
TCalc.MatrixDyn|88), TNetwork. Matrix|56), TNetwork. MatrixDyn[561 or on your own.

If Demand parameter is nil (not set), the algorithm assumes 1 for all customers.

© 2022 RouteWare / Uffe Kousgaard

Optimization classes

3.1.6

135

You can also call the function with NCluster = 1, if you just want to find the weighted center.

The function do not return any values, but populates these properties:

e Property Assignment| s holds a number in the range O .. NCluster-1 about the cluster ID.
e Property Center[:s3 holds information about which customer is the center of the cluster.

Property Dimension

Demand (used as weight) No of customers

Matrix No of customers x customers
Assignment (output) No of customers

Center (output) No of clusters

Sample calculation time:

Customers INo of clusters |Calculation time (msec)
100 10 32

1000 1 16

1000 10 47

1000 100 31

10000 10 3219

10000 100 3532

10000 1000 2422

20000 100 11891

20000 1000 8391

Syntax: Cluster2(NCluster: integer);
Cluster3

This function solves the problem of clustering customers, so maximum distance within each cluster

between center and customers is minimized.

Cost is defined through a matrix/ 135, which can be calculated bﬁ/_&T\ Calc.Matrix[87,
TCalc.MatrixDyn|88), TNetwork. Matrix|56), TNetwork.MatrixDyn[561 or on your own.

You can also call the function with NCluster = 1.
The function do not return any values, but populates these properties:

e Property Assignment| s holds a number in the range O .. NCluster-1 about the cluster ID.
e Property Center| 3% holds information about which customer is the center of the cluster.

Property Dimension

Matrix No of customers x customers
Assignment (output) No of customers

Center (output) No of clusters

Sample calculation time:

|Customers |N0 of clusters ICaIcuIation time (msec) |

© 2022 RouteWare / Uffe Kousgaard

RW Net 4

136
100 10 ~0
1000 1 16
1000 10 47
1000 100 31
10000 10 7031
10000 100 3968
10000 1000 3281
20000 100 19469
20000 1000 13750
Syntax: Cluster3(NCluster: integer);
3.1.7 Demand

3.1.8

This describes demand of each customer.

Property Demand: TCostArray [sb;

District

This function solves the problem of assigning customers (with demands/:s5) to centers (with
capacities|1:)), so

total load[s is within the capacity and cost of travel is minimized for all customers.

Cost is defined through a matrix[%, which can be calculated by TCalc.Matrix2[s?,
TCalc.MatrixDyn2[88 or on your own.

Normally you will have many more customers than centers.

Demand should be a much smaller number than capacity. Otherwise the algorithm isn't very good at
finding a solution.

Optimum results can only be achieved if demand is the same value for all customers. Such as 1.

If Demand parameter is nil (not set), the algorithm assumes 1 for all customers.

The function returns the cost of the solution.

The heuristics parameter can take three values, 1, 2 and 3. With method 1 you will typically get the
lowest

overall cost values, while method 2 gives "nicer" looking solutions, but requires more time to get the
solution.

We recommend trying both and pick the result you prefer.

Method 3 give similar results as method 2, but requires demand=1 (or nil) for all customers. It is ~5
times faster.

Property Dimension

Capacity No of Centers

Demand No of Customers

Matrix No of Centers x Customers
Assignment (output) No of Customers

Load (output) No of Centers

© 2022 RouteWare / Uffe Kousgaard

Optimization classes 137

Unassigned No of unassigned
customers

Sample calculation time (demand = 1 for all customers, random center capacity, but sufficient in
total):

Customers |No of centers |Calculation time - heuristic 1 |Heuristic 2

100 10 16 ms 16 ms

1000 10 719 ms 734 ms

1000 100 1109 ms 860 ms

5000 10 220 sec (~ 4 minutes) 19 sec

5000 100 169 sec (~ 3 minutes) 240 sec (4 min)
5000 1000 15 sec 3754 sec (62 min)

Syntax: District(heuristic: integer): TCost[sh;

This is an example with 100 customers, assigned to 10 centers with varying capacity.
Customers and centers are connected with lines to make the result easier to view:

© 2022 RouteWare / Uffe Kousgaard

138 RW Net 4

3.1.9 Load

This property is read-only and holds the result of a calculation, how much demand were assigned to
each center.

Property Load: TCostArray 155

© 2022 RouteWare / Uffe Kousgaard

Optimization classes 139

3.1.10

3.1.11

3.1.12

3.2

Matrix

This is the input to the optimization, describing cost of matching centers and customers.

Property Matrix: TMatrix| s

Swap

Set this to make the Cluster1[1s3 function perform additional steps of swapping and improving quality
of solution a lot.

This makes it slower and should only be used with uniform demand /.

Property Swap: boolean;

Unassigned

This property is read-only and reports how many customers wasn't assigned to a center in the
District| 138 method.

Property Unassigned: integer;
TTSP

This class is for travelling salesman optimization.

There is support for asymmetric matrices in the Pro version. This is especially important if you have
many places in dense urban areas with many one-way restrictions.

In the Standard version, the input matrix is made symmetrical before optimization.

The algorithm uses random permutations, but you can control the randomness using the
RandSeed| /% property.

Typically you will get the true optimum solution for instances with up to ~100 places to visit. With
>100 places the quality of the solution degrades slowly.

Set properties PercentWithoutimproveStop[b, MinCalcTime[++8 and TimeLimit[:+} to control for how
long time the optimization should continue.

Recommended values give a fairly good solution for up to 600 places.
With more places, increase the time values further.
With a faster CPU than 2013-standard, you can decrease the time.

Generally test how much time is really needed for your setup, if you are going to do similar
calculations for the same area, many times.

Set Mode [14h before running the optimization[®,
It is also possible to monitor progress event[11), and eventually ask the algorithm to stop earlier.

When using PercentWithoutimproveStop| 1, the progress may decrease when a new improvement
is found.

After the optimization has finished, you have access to cost[::81 and optimized sequence[:h (key
result).

© 2022 RouteWare / Uffe Kousgaard

140

RW Net 4

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

Cost

This read-only property holds the cost of the calculated sequence. It gets updated during execution
too, if you monitor progress events[11.

Property Cost: TCost/ 58
Execute
This procedure starts the actual optimization.

Prepare the matrix using
o TNetwork.Matrix[561 or TNetwork.MatrixDyn[56\ (for as-the-crow fly distances)
e TRouteCalc.Matrix/ 871 or TRouteCalc.MatrixDyn[8 (for real routes)

Eventually call MatrixPreProcess| 14 to refine processing.

See also ExecuteFulll 4.

Syntax: Execute(mat: TMatrix/ 1%

ExecuteFull

This works the same way as Execute[8), except it testes all possible combinations.

Calculation time increases fast as the dimension of the matrix increases. Just 10 elements means
more than 3 million combinations (10!) and a calculation time of appr. 1 sec. With 12 elements you

are reaching a couple of minutes.

Use it for testing if the solution found by Execute is the best possible. It almost always is with just 10
elements.

Syntax: ExecuteFull(mat: TMatrix] :s)

MatrixPreProcess

Very often an optimization will result in some links being traversed more than once (either in the
same or opposite directions). If there are multiple locations along that same link, it won't matter if the
locations are visited first or second time the link is traversed. At least not from an optimization point
of view. But for humans it feels most natural if all stops along the same link is just after each other.
This method will update the matrix, so short and long distances between locations are preferred to
two medium distances. It essentially takes the square-root of the normalized cost: Matrix(*) =

sqrt(Matrix(*) / max(Matrix(*))).

Example: Costs 0.25 + 0.75 has the same total as 0.5 + 0.5. After processing we will now see that
sgrt(0.25) + sqgrt(0.75) < sqgrt(0.5) + sqrt(0.5), so 0.25 and 0.75 are preferred to 2x 0.5.

Syntax: MatrixPreProcess(var mat: TMatrix[%)
MinCalcTime
This property controls the minimum amount of msec, the optimization phase runs.

Recommended value: N * 50, where N = dimension of problem.

© 2022 RouteWare / Uffe Kousgaard

Optimization classes 141

3.2.6

3.2.7

3.2.8

3.2.9

3.2.10

3.3

Default: 2000

Property MinCalcTime: integer

Mode

This describes how the optimization is performed.

Default value: tspRoundTrip

property Mode: TTSPmode|:eh
PercentWithoutimproveStop

This property controls when the optimization should stop.

If for instance the value is 50% and last improvement was after 20 sec, then it will stop after 30 sec,
if no further improvements happened inbetween.

Assuming MinCalcTime[10 < 30 sec and TimeLimit[::% > 30 sec.
Default: 100.

Property PercentWithoutimproveStop: integer

RandSeed

This property controls which seed is used for the optimizations, so the same calculation can be run
again, if needed. Or different one.

Default: 1

Property RandSeed: integer

SortedIindex

This read-only property holds the optimized sequence after calculation has ended.
Property Sortedindex: TintegerArray [159

TimeLimit

This property controls the maximum amount of msec, the optimization phase runs.
Recommended value: N * 600, where N = dimension of problem.

Default: 10000

Property TimeLimit: integer

TTSPcurb

This class is similar to TTSP, except it also takes curb (kerb) approach and U-turns into
consideration.

It shares these methods / properties with TTSP: Cost[8), MinCalcTime[5, Mode/w:h,
PercentWithoutimproveStop[:«h, RandSeed[+}, Sortedindex/:+h and TimeLimit[h.

© 2022 RouteWare / Uffe Kousgaard

142

RW Net 4

3.3.1

3.3.2

3.3.3

After the optimization has finished, you have access to cost[:«), optimized sequencel:«D, Sideln[::H
and SideOut/ 143,

Known issue:
Using this method with only 3 elements may not always give the optimium result. This shall be fixed.

See also CulDeSacCurb[8
ExecuteCurb

This procedure starts the actual optimization.

Prepare the matrix using MatrixDynCurblsochrone|:oh or MatrixDynCurbRoute 100

Eventually call MatrixPreProcess| 1% to refine processing.

UTurnCosts should either be:

= 0: Allowed

> 0: Allowed, but at an additional cost
< 0: Turn not allowed.

To avoid U-turns, use a high cost or negative value.

DesiredSide:

See the sample on how to setup the array. It can basically be aplgnore or apReverse / apForward.
The 2 last ones depend upon left / right driving.

Syntax: ExecuteCurb(mat: TCurbMatrix[:s5; UTurnCosts: TCostArray 15, DesiredSide:
TApproachArray[sh)

ExecuteCurbFull

This works the same way as ExecuteCurb[3, except it testes all possible combinations.
Calculation time increases fast as the dimension of the matrix increases. Just 10 elements means
more than 3 million combinations (10!) and a calculation time of appr. 1 sec. With 12 elements you

are reaching a couple of minutes.

Use it for testing if the solution found by Execute is the best possible. It almost always is with just 10
elements.

Syntax: ExecuteCurbFull(mat: TCurbMatrix[1s%; UTurnCosts: TCostArray [%, DesiredSide:
TApproachArray[:s)

MatrixPreProcess

Same method as TTSP.MatrixPreProcess|), just with a different parameter.

Syntax: MatrixPreProcess(var mat: TCurbMatrix| %)

© 2022 RouteWare / Uffe Kousgaard

Optimization classes 143

3.3.4

3.3.5

3.3.6

3.3.7

Sideln

This function returns from which side a location should be approached (in-bound).
Syntax: Sideln(index: integer): TApproach! sh

SidelnArray

This read-only property returns from which side all locations should be approached (in-bound). Can
be used together with TDrivingDirections.SidelnArray [

Type: TApproachArray [1sh

SideOut

This function returns from which side a location should be approached (out-bound).
Syntax: SideOut(index: integer): TApproach/[:sh

SideOutArray

This read-only property returns from which side all locations should be approached (out-bound).
Can be used together with TDrivingDirections. SideOutArray [1:3

Type: TApproachArray [:sh

© 2022 RouteWare / Uffe Kousgaard

Part IV

Helper Classes

4 Helper Classes

These are classes that primarily are for input / output from the main classes.
41 TBaselist

Various generic lists are used throughout RW Net, see the sub-chapters for implementations:
TBaseList
This is a basic, unsorted list. T is the list item.
method Add(ltem: T): Integer
method Clear
method Delete(Index: Integer)
method Extract(Index: Integer): T
method Insert(Index: Integer; Item: T)
property Capacity: Integer
property Count: Integer (read-only)
property Items[Index: Integer]: T
TBaseListSort adds these methods to TBaseList:
method IndexOf(Item: T): Integer
method RemoveDuplicates (calls Sort internally)
method Sort
property Reverselndex: Boolean
property Reverseltems[Index: Integer]: integer (read-only)
property Sorted: Boolean (read-only)
4.1.1 TAItRouteList
This is an implementation of TBaseListSort[5
List item: TAltRoute[1sh
4.1.2 TCoordCostSiteList

This is an implementation of TBaseListSort| %
List item: TCoordCostSite[1h

4.1.3 TGPSMatchList
This is an implementation of TBaseListSort/ 18
List item: TGPSMatch| s

4.1.4 TImportErrorList

This class is an implementation of TBaseList/:% with errors that gets recorded during data import[28}

List item: TImportError[sh

© 2022 RouteWare / Uffe Kousgaard

Helper Classes 147

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

TIntegerList

This is an implementation of TBaseListSort| 48

List item: integer

Adds two methods:

1) RemoveBlanks, which removes items that are O.

2) SetFromBitArray, which creates a list of "true” elements in the TBitArray [18),
TIntegerLists

This is an implementation of TBaseListSort| 46

List item: TIntegerList[+"

TLocationList

This is an implementation of TBaseListSort[b

This is a list of not just TLocations[s5, but also a corresponding TFloatPoint[:sh. Depending upon
how the list is being used, the requirements regarding the location and coordinate part may be

different.

See also Location2CoordinateList[581 and NearestLocationSimpleList[78},

List item: TLocationListltem[1s8)

Additional methods:

Add1(Item: TLocation[s8): integer

Add2(link: integer; percent: TPercent[:}): integer

Add3(P: TFloatPoint[1s7): integer

Add4(ltem: TLocation[s%; P: TFloatPoint[sh): Integer

Add5(x,y: double): Integer

RemoveStartEndPos. Removes all items, where percent = 0 or percent = 1.

TPOIList

This is an implementation of TBaseListSort/ b
List item: TPOI [}

TStepList

This is an implementation of TBaseListSort/ %
List item: TCost[8

Adds function Max, which returns the largest item.

© 2022 RouteWare / Uffe Kousgaard

4.1.10 TTrafficList

This class is an implementation of TBaseList[1 for use in traffic assignment/o.

List item: TTraffic[e

Only available in Pro

4.2 TBitArray

This class is simply an array of boolean values, but with additional functions built-in.
It is more or less similar to BitArray in .NET and TBits in VCL.
4.2.1 Bits
This property allows you to get or set individual bits in the array.
Property: Bits[Index: Integer]: Boolean
4.2.2 CountFalse
This method returns the number of false in the array.
Syntax: CountFalse: integer
4.2.3 CountTrue
This method returns the number of true's in the array.
Syntax: CountTrue: integer
424 P_And
This calculates logical and with the B parameter.
Syntax: P_And(B: TBitArray)
4,25 P_Not
This calculates logical not of the whole array. Il.e. switches all values between false and true.
Syntax: P_Not
426 P_Or
This calculates logical or with the B parameter.
Syntax: P_Or(B: TBitArray)
4.2.7 SetAll
Sets all elements to the specified value

Syntax: SetAll(Value: boolean)

© 2022 RouteWare / Uffe Kousgaard

Helper Classes 149

4.2.8

4.2.9

4.2.10

4.2.11

4.3

4.4

4.4.1

SetAllFalse

Sets all elements to false.

Syntax: SetAllFalse

SetAllTrue

Sets all elements to true.

Syntax: SetAllTrue

SetFromintegerArray

This sets the size automatically and assigns to true, when the elements of 1A is different from 0.
Syntax: SetFromintegerArray(lA: TintegerArray)

Size

This properties specifies the size of the array. If the array is extended, new elements are initialized
to false.

Property Size: Integer
TPolyGeneration

This class is normally only used as a place holder for output from IsoPoly[83/ 1soPolyFast/8é)
method, which is used as input to TVoronoi[8.

IsoPoly[83 creates the instance, but you should free it on your own.

It can be exported using ExportPolyGeneration[58) for viewing of the content.

It contains 2 public fields, which can be accessed directly:

Coor dCost Si teLi st: TCoor dCost Si t eLi st [14R)
StartPoints: TFl oat Poi nt Arraylsh

TRandom

This is for generating pseudo random numbers, but implemented as a class so you have full control
and can use it in threads too.
It is also independant of the compiler used.

It uses the same formula as used in Delphi:
http://en.wikipedia.org/wiki/Linear_congruential_generator

NextDouble
Returns a number, 0 <= x< 1.

Syntax: NextDouble: double;

© 2022 RouteWare / Uffe Kousgaard

150

RW Net 4

4.4.2

4.4.3

4.4.4

4.5

4.6

NextInt

Returns an integer, 0 <= x < value.

Syntax: NextInt(value: integer): integer;

Randomize

Initializes the random number generator from the compiler built-in random seed generator.
Syntax. Randomize;

SetSeed

Define your own seed, so you repeat a certain sequence of random numbers.

Syntax: SetSeed(value: Int64);

TRoadClassSpeed

This class is used for storing a set of speeds related to each road class| 5™.

Itis a fixed array of doubles with index O to 31. Default value is 60 km/h. Only values >0 are allowed.
It can be accessed directly using its index.

It has a single method for loading from an INI file in the same format as used by FleetEngine and
RouteWare Studio.

Default speed is 60 km/h for undefined classes.

If mph=true, all speeds are multiplied by 1.609 when read from the ini file.
Fractional speeds are allowed, always use . as decimal separator.

Syntax: LoadFromiNI(filename, section: string: mph: boolean);

Example: LoadFromINI('c:\fleetengine.ini' , 'Netl");

[netl]

Speedl =110
Speed2 = 90
Speed3 =71.5
etc.

TRoadClassTurnCost

Same as TRoadClassSpeed|:sh), except valid range is >=0 and default value is 0. Unit can be
anything, but we recommend minutes.

Used in TurnAutoProcess| 6.

© 2022 RouteWare / Uffe Kousgaard

Helper Classes 151

47 TStringList
This parameter is slightly different, depending on the platform:

o NET: List<string>
e Delphi: TStringList

4.8 TTurnTexts

This is a pre-populated array of strings, which you can use when generating driving directions| 5.

All elements are accessible for reading / writing through property Items[], so you can modify them
for your own liking.

Default values are in English.

Degrees Text

0 - 22 Straight on

23 - 67 Slight turn to the left
68 - 112 Turn to the left

113 - 157 |Sharp turn to the left
158 - 202 |U-turn like

203 - 247 JSharp turn to the right
248 - 292 [Turn to the right

293 - 337 |Slight turn to the right
338 - 360 [Straight on

361 Take exit 1 from roundabout
362 Take exit 2 from roundabout
363 Take exit 3 from roundabout
379 Take exit 19 from roundabout

© 2022 RouteWare / Uffe Kousgaard

Part V

Simple types

5 Simple types

These types are the simple ones, without a constructor / destructor.
51 Single

A single is a 4-byte floating point number. It is generally used for costs, distances etc. in RW Net.
52 Double

A double is a 8-byte floating point number. It is generally used for coordinates.

53 Word

Word means a 2-byte unsigned integer (uint16).
Range: 0 to 65,535.

5.4 Integer

Integer means a 4-byte signed integer (int32).
Range —2,147,483,648 to 2,147,483,647.

55 Int64

Int64 means a 8-byte signed integer.
Range: —9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

This is typically used when working with unique identifiers in databases like TomTom, HERE and
OpenStreetMap.

56 TAItRoute

A TAltRoute record is a single route as a result of multiple alternative routes, see
TRouteCalc.AltRouteDyn | 105

TAl t Route = record

Rout e: TRout e[h

di stance, ti ne, sortvar: TCost;
end

5.7 TApproach

Enumeration: (aplgnore, apForward, apReverse)

5.8 TApproachArray

Array of TApproach|[sh

© 2022 RouteWare / Uffe Kousgaard

Simple types 155

590 TCodePage
On .NET: Same as System.Text.Encoding
On other platforms: Word|[s
See also Wikipedia
5.10 TColor
Same as integer[=h on .NET
5.11 TConcatenationMode

This enumeration describes the various modes for TDrivingDirections[::5 output;

cnVer yConpact The whol e result as one record

cnConpact Al | _segnments between two | ocations as one record
cnConpact OF f Road JAs above, but with off road segnments separately
cnDri vingDirecti ofAs driving directions

ns
cnSepar at e Wth all segments as separate records - very detailed and
i ncludes link 1D

512 TCoordCostSite

This type is used as input to voronoi generation.

TCoordCostSite = record
Cost: TCost [15H
Site: |nteger [1sh
P: TFl oat Poi nt [15h
end;

If site = 65535 it means no nearest facility was in reach.

513 TCoordinateUnit

This enumeration informs about the coordinate units in use. It can only be set before importing[26) a
dataset.

Geographic coordinates:

cuRad (radians, -pi - +pi, -pi/2 - +pi/2)
cuDeg (degrees, -180 - +180, -90 - +90)
cuGrad (grads, -200 - +200, -100 - +100)

Projected coordinates (S| units):
cuMm

cuCm

cuDm

cuM

CUuKm

Projected coordinates (non-Sl units):
cuPaint

© 2022 RouteWare / Uffe Kousgaard

culnch

cuLink

CuFt

cuSurveyft

cuYard

cuChain

cuRod

cuMiles

CUNmiI

cuUnknown

Data using geographic coordinates are checked during import for valid range.

By far the most usual ones are cuDeg and cuM.
5.14 TCost

This is used for cost, time, turn delays and speed of routes, links etc.

Alias for Single/sh
5.15 TCostArray
Array of TCost[:sh
5.16 TCurbMatrix

A 3D array of TCost/:sh elements.

See TTSPCurb[:h and MatrixDynCurbRoute 107 / MatrixDynCurblsochrone|[o7,

5.17 TDistanceUnit
Enumeration: (duKm,duMiles)

5.18 TErrorCode

An enumeration:

ecDel et ed Cbj ect is deleted

ecNot GeoCoded bj ect _is not geocoded

ecNot Pol yLi ne bject is not a (poly)line, but type <value> (value only for
SHP/ TAB fil e)

ecMul ti Secti on bj ect has <val ue> secti ons

ecZer oOr OneVertic|Cbj ect has only <val ue> vertices

es

ecLoopLi nk Cbject is a loop link

ecTooManyVerti ces]Obj ect has >65535 vertices

Not all error codes are possible for both TAB, MIF and SHP files.

© 2022 RouteWare / Uffe Kousgaard

Simple types 157

5.19

5.20

5.21

5.22

5.23

5.24

5.25

TFileKind
Enumeration: fkCSV, fkDBF

Use fkCSV when working with comma-separated files, such as CSV and MIF
Use fkDBF when working with DBF and DAT files.

TFloatPoint

This is a record describing a point:
TFl oat Poi nt = record

X,y: doubl el1h
end

If you are working with spherical / geographic coordinates, use x for longitude and y for latitude.

TFloatPointArray
Array of TFloatPoint[%

TFloatPointArrayEx

TFl oat Poi nt ArrayEx = record
Pnt: TFI oat Poi ntArrayll_sﬁ
Count : | nt eger

end

Count keeps track of how many positions in Pnt is in use.

TFloatRect

This is a record describing a rectangle:
TFl oat Rect = record

Xxm n, ym n, xmax, ynmax: doubl elsh
end

TGISField
Field type identifier:

Enumeration: (gfChar, gfinteger, gfSmallint, gfDecimal, gfFloat, gfDate, gfLogical, gfTime,
gfDateTime, gflnt64)

TGISFormat

GIS format identifier:

Enumeration: (gfMIF, gfDBF, gfSHP, gfCSV, gfArray, gfMITAB, gfGML2, gfKML2, gfGeoJSON,
ofMFAL, gfMIF8, gfEFAL, gfEFALX, gfGPX)

ofMFAL is not available for .NET.

Output from gfGeoJSON is stored as a string on the calling object, if no filename is specified:

© 2022 RouteWare / Uffe Kousgaard

158

RW Net 4

5.26

5.27

5.28

5.29

5.30

TNetwork.GeoJSON[53
TSpatialSearch.GeoJSON/ 731
TCalc.GeoJSON[sh
TGISwriter.GeoJSON/:2h

TGPSMatch

This record type is used for storing results for possible matches from function
TSpatialSearch.NearestL ink[78)

TGPSMatch = record
Loc: TLocation| 18
Distance: double
DifBearing: double
Reverse: boolean
OneWayMisMatch: boolean
end;

Distance is in km. The smaller, the better

DifBearing is in degrees. The smaller, the better.

Reverse: True, if the record is for driving in the opposite direction of digitization.
OneWayMisMatch: True, if the road is oneway and it doesn't match the bearing.

TIimportError

TInmportError = record
fileindex: integer, O-based, refers to items in |list of files[2™
linklocal: integer, 1-based, refers to a link inside a file
link: integer, 1-based, refers to total sequence of l|inks (internal
errorcode: TError Code s
val ue: integer

end

TintegerArray
Array of integer/[59
TLocation

See network terminology [4" for details.

TLocation = record
l'ink: integer
percent: TPercent [16h

end

TLocationListltem

TLocationListltem = record
l oc: TLocation[=®
P: TFl oat Poi nt [558

end

| D)

© 2022 RouteWare / Uffe Kousgaard

Simple types

5.31

5.32

5.33

5.34

5.35

159

TMatrix
A 2D array of TCost/:s5 elements.

When used in optimizations it need to be square.

TMIBrush

This is used for defining region style in TAB / MIF files.

TM Brush = record
pattern: T™ BrushPat t er n[1s9)
fg_color : TCol or [159 (foreground)
bg_col or : TCol or [15H (background)
end

Predefined TMIBrush constants:

BrushDefaul t: Black outline, white fill
QutlineOnly: Black outline, no fill

TMIBrushPattern

This describes a Maplinfo pattern from 1 to 71. How they look can be seen in Maplnfo's
documentation.

Type: Integer [1sh
TMiILinePattern

This describes a Maplinfo line pattern from 1 to 118. How they look can be seen in Maplinfo's
documentation.

Type: Integer[1=h
TMIPen

This is used for defining polyline and region linestyle in TAB / MIF files.

TM Pen = record
W dth: TM PenW dt h[sh
pattern: TM LinePattern/[sh
Col or: TCol or [15H

end

Predefined TMIPen constants:

PenDefault: Solid narrow line
Penlnvisible: Invisible line (used by regions)

© 2022 RouteWare / Uffe Kousgaard

160 RW Net 4

536 TMIPenWidth

This describes a Maplinfo line width from 1 to 2047. See Maplnfo's documentation for further
documentation.

Type: Integer [1sh

5.37 TMISymbol
This is used for defining polyline and region linestyle in TAB / MIF files.
TM Synbol = record
Shape: TM Synbol No [168
Col or: TCol or 18
Si ze: TM Synbol Si ze[h
end

Predefined TMISymbol constant:

SymbolDefault: Small black dot

5.38 TMISymbolNo

This describes a MapInfo symbol style from 31 to 67. How they look can be seen in Maplnfo's
documentation.

Type: Integer 159
5.39 TMISymbolSize

This describes a Mapinfo symbol size from 1 to 48. See Maplnfo's documentation for further
documentation.

Type: Integer [1h

5.40 TObjectTypes

Enumeration:

otNone No object
otPoint Point

otPline Polyline

otRegion |Region / Polygon

541 TPercent

See network terminology [4" for details.

Alias for double[sh

© 2022 RouteWare / Uffe Kousgaard

Simple types 161

5.42 TPOI

5.43

5.44

TPOI is used for "Points-Of-Interest" that can be included in driving directions[::%. Name and
location fields should be self-explanatory, while approach parameter can be used, if a POI can only
be seen when driving in one direction.

If you know the coordinates of a POI, use TSpatialSearch.NearestLocation[751to get both location
and side of road.

This table shows how to translate from side to approach, if we assume a POl is only visible in the
same side of the road as the vehicle is moving:

Side Right-hand driving |Left-hand driving
-1 (left) apReverse apForward
+1 (right) apForward apReverse

If a POI is visible when driving in both directions, just set Approach to aplgnore.

TPA = record
Name: string
Locati on: TLocati on[sH

Approach: TApproach [1sH

end

TRoute

A TRoute describes a sequence of links and nodes, together making up a route between 2 nodes or
2 locations:

If there are one less links than nodes: Between 2 nodes (and percentl=percent2=0)
If there are one less nodes than links: Between 2 locations

TRoute = record

nodes: TIntegerArray [1B)

links: TInt egerArrayEEI
percent 1, percent2: TPercent [16B)
end

If a link number is negative it is travelled in the reverse direction.
TTimeStampFormat

This enumeration describes the format for time stamps in TDrivingDirections[+18;

tfSkip Ski p in output

t f 24hour |24 hour fornat: "23:59"

tf12hour Jam pm format: "11:59 PM

tfFloat |Floating point nunmber for your own formatting (fraction of a
day). It nay be >1, but not negative.

Exanple: 0.25 = "6:00 AM' = "6: 00"

tfString JA string in the sane formt as TCal c. Ti meFor mat AsString[9%)

© 2022 RouteWare / Uffe Kousgaard

162 RW Net 4

545 TTraffic

This type is used for a volume of traffic between coordinates P1 and P2 in traffic assignment/:o.

TTraffic = record
P1, P2: TFl oat Poi nt [N
Vol une: TVol une 165
end

Only available in Pro

546 TTSPmode

This enumeration describes the various modes for TSP optimization:

t spRoundTrip |This is the classic round trip node

tspStartEnd |JThis starts at the first itemin the |list and ends at the |l ast iten|
t spOpenEnd This starts at the first item but can end at any item

t spOpenStart |This can start anywhere, but ends at the list item

t spOpen This can start and end anywhere

When optimizing for all other modes but tspRoundTrip, set extra = true in methods Matrix/ 561 and
MatrixDyn[561,

547 TVertexCount
This is used for the number of vertices on a link.
Minimum is 2 (first and last).

Maximum is 65535.
It is the same as a 2-byte unsigned integer (word|:sh).

5.48 TVia

This type and corresponding TViaArray |12 can be used when creating driving directions| 5

Field name is a textual description and time is the time in minutes it takes to make the stop.

TVia = record
Name: string
Ti me: TCost

end

5.49 TViaArray
array of TVial:}

550 TVolume

This is used in traffic volumes in TTraffic for traffic assignments| b

Alias for single[=h

Only available in Pro

© 2022 RouteWare / Uffe Kousgaard

Simple types

551 TVoronoiMode

5.52

This enumeration describes the various modes for voronoi[15 output:

163

\vmiTri angul ati onLi nejBasic triangul ation, as |ine output

\vnilr i angul ati onSi nplBasi ¢ triangul ati on, as pol ygon out put
| e

\vnSi npl eLi ne Basi ¢ voronoi, as |ine output
vnSi npl e Basi ¢ voronoi, as pol ygon out put
v sochr one Drivetine isochrone

vnSer vi ceAr ea Servi ce area

TWordArray

Array of Word|s%

© 2022 RouteWare / Uffe Kousgaard

