Loading HERE
 data into RW Net / NetServer / RouteFinder.
Version 1.1 (23. Sep 2006)
HERE data is a big database with a lot of information on specific restrictions for various types of vehicles. This setup only extracts some of the information and you will have to further refine the description to decide how to handle ferries etc.

This description is based upon version 3.5.0 of the HERE database.

If you only have access to the HERE Standard product (versus Premium), only the street layer is included and you will not really be able to use it for routing, since several important attributes are missing.

The “HERE Transport” package includes additional attributes for maximum height of vehicles (bridges), maximum allowed weight and similar information not found in the standard database. It is being introduced in France and Germany in 2006. Other countries follow later on.

How to use the generated files with RW Net / NetServer / RouteFinder is slightly different. Please see the documentation.

TAB format

If your data covers several area’s you will to merge them into a single table first. Tables to process include: Streets, zlevels, cdms and rdms.

A few possible tools to do this:

http://www.directionsmag.com/files/index.php/view/174
http://www.directionsmag.com/files/index.php/view/245
There is a small MapBasic application included which does all of the required processing for setting up the data after the merging has been performed.
SHP format

This description is based on having access to a database system capable of handling DBF files as a minimum (MS Access can do this).

If your data covers several area’s (i.e. multiple SHP files), you will have to merge them first using any appropriate tool. At RouteWare website there is a command-line tool for merging the DBF files, but for merging the SHP files, you will need a GIS, such as ArcGIS or the free ogr2ogr command line tool, that can be used for merging:

http://www.gdal.org/ogr/drv_shapefile.html
Copy streets.* to a new directory

Copy zlevels.* to a new directory

Copy cdms.dbf to a new directory

Copy rdms.dbf to a new directory

Most of the joins in the next many steps are based on a Link_ID field with 10 decimals. Not all databases work correctly with this many digits. To avoid the problem, you can choose to change the field type from Numeric to Char. This can either be done from an application capable of this (not MS Excel!) or you can change the field type directly with a hexadecimal editor: With DBF files that is as easy as modifying the “N” in the header with a “C”.

Fields that should be changed:

Streets: Link_ID

Zlevels: Link_ID

rdms: Link_ID, Man_LinkID

cdms: Link_ID

Import the dbf’s into MS Access and execute this list of SQL commands:

SELECT link_ID, St_name, Func_class, Speed_cat, Dir_travel, Roundabout, AR_Auto, 0 as Attribute, 0 as zlevel_from, 0 as zlevel_to

INTO link

FROM streets

Add a new field ID that is 1, 2, 3 etc. (Use an autonumber field). Change back to normal integer field.

Update field attribute like this:

UPDATE link SET link.attribute = [link]![Speed_cat] + IIf([link]![dir_travel]="F",512,0) + IIf([link]![dir_travel]="T",1024,0) + IIf([link]![roundabout]= "Y",2048,0)

Add z-level information:

Select link_ID, z_level

Into zlevel_from

From zlevels

Where Point_Num=1 and z_level<>0
Select link_ID, z_level

Into zlevel_to

From zlevels

Where Point_Num<>1 and z_level<>0 and intersect="Y"

UPDATE link INNER JOIN zlevel_from ON link.LINK_ID = zlevel_from.LINK_ID SET link.zlevel_from = [zlevel_from]![Z_LEVEL]

UPDATE link INNER JOIN zlevel_to ON link.LINK_ID = zlevel_from.LINK_ID SET link.zlevel_to = [zlevel_to]![Z_LEVEL]

Road classes generated are directly based on the speed_cat field, i.e 1-8 according to the HERE documentation.

The main street database (link) is now ready. Export link into link.dbf. Make sure that the order of the records in link.dbf is still the same as in streets.dbf. Copy streets.shp and streets.shx to link.shp and link.shx.

If you want to delete any streets from the database, edit link.shp inside ArcGIS for instance. Especially records with AR_Auto=”N” should be deleted.

Next step is to process turn restrictions if desired:

Load link.dbf back into Access as link2. It is important that you do this before next step with turn restrictions.

SELECT [Rdms].[LINK_ID], [Rdms].[COND_ID], Count([Rdms].[MAN_LINKID]) AS CountOf

Into tmp1

FROM Rdms

GROUP BY [Rdms].[LINK_ID], [Rdms].[COND_ID]

SELECT tmp1.LINK_ID, tmp1.COND_ID

INTO tmp2

FROM tmp1

WHERE tmp1.CountOf=1

SELECT Rdms.LINK_ID, Rdms.COND_ID, Rdms.MAN_LINKID

INTO tmp3

FROM Rdms

INNER JOIN tmp2 ON (Rdms.COND_ID = tmp2.COND_ID) AND (Rdms.LINK_ID = tmp2.LINK_ID)

SELECT tmp3.LINK_ID AS link_id1, tmp3.MAN_LINKID AS link_id2

Into tmp4

FROM Cdms

INNER JOIN tmp3 ON Cdms.COND_ID = tmp3.COND_ID WHERE (Cdms.COND_TYPE=7) AND (Cdms.AR_AUTO="Y");

SELECT link.ID AS ID1, tmp4.link_id2

INTO tmp5

FROM tmp4

LEFT JOIN link ON tmp4.link_id1 = link.LINK_ID

SELECT tmp5.ID1, link.ID as ID2

Into Turns

FROM tmp5

LEFT JOIN link ON tmp5.link_id2 = link.LINK_ID

Table turns now contains a list of turn restrictions (pair-wise link ID’s).

�	Former NavTeq

